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INTRODUCTION 

In a paper of Sypriya Mohanty and S. P. Mohanty (refer to [1]), the notion of an independent 
Pythagorean number is introduced and discussed. Recall that any Pythagorean triple (x, y, z) may 
be represented by 

x = 2uvt, y = t(u2-v2\ z = t(u2+v2) (1) 

where u and v are relatively prime natural numbers of opposite parity, that is, u + v = 1 (mod 2), 
(u,v) = l, u > v, and t some natural number. 

In the same paper, Definition 1 (p. 31) calls the area of a Pythagorean triangle a "Pythagorean 
number." And that of a primitive Pythagorean triangle a " primitive Pythagorean number." Thus, 
a Pythagorean number is a positive integer of the form 

A = -{2uvt)[t(u2 -v2)] = t2uv(u2 - v 2 ) , (2) 

where the natural numbers u and v satisfy the above conditions. 
When the Pythagorean triangle at hand is primitive, i.e., when t = 1, we obtain the general 

form of a primitive Pythagorean number described by 

B = uv(u2-v2). (3) 
The authors define the notion of an independent Pythagorean number and they prove that there 
exist infinitely many primitive Pythagorean numbers that are not independent (Theorem 10, p. 40). 
According to that definition (Definition 2, p. 40), a Pythagorean number is called independent if it 
cannot be obtained from another Pythagorean number by multiplying the latter by t1:, where t is a 
natural number > 1. 

Note that if a Pythagorean number is independent, it must be primitive. The converse, of 
course, is false, as the authors have proved: there exist (infinitely many) primitive Pythagorean 
numbers that are not independent. 

In this paper, we will address Problem 2 in the author's paper. Namely, find sufficient condi-
tions for an integer B to be an independent Pythagorean number. We will find families of primi-
tive Pythagorean numbers that are independent. First, we will state the two theorems of this 
paper, then their proofs. 

Theorem 1: Let u and v be natural numbers such that u + v = 1 (mod2),(u,v) = 1, mdu>v. 
Assume that either 

(a) all four numbers u,v,u- v, and u + v are squarefree (the case v = 1 included), or 

(b) the three integers u- v, u + v, and —• are all squarefree and —- odd (the case v = 1 included). 

Then the primitive Pythagorean number uv(u2 - v2) is independent. 
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Theorem 2: Let p > 3 be a prime and v > 1, w > 3 be odd squarefree natural numbers (the case 
v = 1 included) both of whose (distinct) prime divisors are all congruent to 1 mod p. Let n be a 
positive integer and r an odd prime distinct from p and the prime divisors of w. Assume that 
(u, v) - 1, where u - 2n • r • 2w. Furthermore, suppose that # - v is a squarefree integer such that 
each of its prime divisors is congruent to 1 modp and that u + v is a squarefree integer containing 
exactly one prime divisor q # 1 (mod /?), while the rest of its prime divisors, if any, are all 
congruent to 1 modulo p. Assume that n = 1 or n = 2. 

Then the primitive Pythagorean number uv(u2 - v2) is independent. 

Proof of Theorem 1: Suppose that 

uv(u2-v2) = t2.b (4) 

where b is a Pythagorean number and t some positive integer. Since b is a Pythagorean number, 
according to (2), b must be of the form 

b = T2-U-V(U2-V2), (5) 

for some positive integers T, [/and Vwhere 

t />F,17 + F = l(mod2) and (U,V) = 1. (6) 

Substituting for b in (4), we obtain 

uv(u2 -v2) = t2 -T2 U V (U2 -V2) or 
(7) 

uv(u-v)(u + v) = t2-T2UV(U2-V2). 
If hypothesis (a) is satisfied, then the product uv(u - v)(u + v) must be a squarefree integer, 

since each of the numbers uv, u- v, and u + v is squarefree, and these three integers are mutually 
coprime in view of (u, v) = l and u + v = 1 (mod 2). Then (7) clearly implies t2T2 = 1 => tT = 1 => 
f = r = i. 

If hypothesis (b) is satisfied, 4 must exactly divide the left-hand side of (7). Since uv = 0 and 
w ± v == 1 (mod 2), *2T2 must be odd and uv = 0 (mod 4). Dividing (7) by 4, we obtain 

^ . ( M - v ) ( M + v) = , 2 r 2 . ^ . ( C / 2 - F 2 ) (8) 
4 4 

Since the left-hand side of (8) is an odd squarefree integer, we have t2T2 = l=>tT= 1=> 
t = T = 1. Hence, uv(u2 - v2) is an independent Pythagorean number. 

Proof of Theorem 2: Evidently, according to the hypothesis, the Pythagorean number 
uv{u2 - v 2 ) must be of the form 

uv(u2 -v2) = uv(u-v)(u + v) = 2" -q-r2 -px -•-pm,, 

where all the odd primes qj,P\,'-,pm are distinct and px = • • • = pm = 1 (mod p). Suppose that 
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2n.q.r2.Pl...pm=t2ab(a-b)(a + h), (9) 

where the positive integers a and b have opposite parity, (a, b) = 1, and a > b. Assume that a is 

odd and b even (the case a even and b odd is treated in exactly the same way). We set b - 2k -B, 
B odd, and t = 2§ T in (9) to obtain 

2n -q-r2 •pl.-.pm = T2 -228+k -a-B(a-2k -B){a + 2k -B), (10) 
which gives 

4-r2 - A - Pm = T2 -a-B(a-2k -B)(a + 2k .£), (11) 

since we must have 25 4- k = n; with 1 < k < n, 5 > 0, and T odd. 
First, we will prove that (11) cannot be satisfied for T odd and T > 1. Let us assume to the 

contrary that (11) is satisfied for some T> 1 and T odd. In view of the fact that the left-hand side 
of (11) represents the unique factorization of the right-hand side of (11) into powers of distinct 
primes and because r2 is the only square of a prime, it is rather obvious that we must have T= r; 
hence, (11) implies 

q°pl'-pm=a-B(a-2k-B)(a + 2k>B). (12) 

Since pl^--~pm = l (mod/?), (12) clearly shows that \£q\aB, then a-2kB = 1 and a + 2kB = 1 
(mod/?); so 2a = 2 and 2k+lB = 0 (modp); therefore if q\aB, 

a = l and 5 = 0 (mod/?), (13) 

which is a contradiction, since/? as a divisor of 5 would divide the left-hand side of (12), con-
trary to the fact that/? is distinct from q, Pi,--,pm. Next, suppose that q\(a-2k -B) or that 
q\(a + 2k -B). Equation (12) clearly implies in such a case, a = B = l (mod /?). Also if 
q\a-2k°B^ we must have a-2k-B = q (mod/?); and since a = 1 (mod/?), we end up with 
2 = # + l (mod/?) => ^ = 1 (mod/?), contradicting the hypothesis again [note that a-2kB = q 
and a + 2k B = 1 (mod p) or vice versa]. 

Hence, we conclude that (11) is not possible with T> 1. Consequently, T = 1; thus, from 
t = 2d-T,w® obtain f = 25. We will show that 5 = 0. According to the hypothesis, n = 1 or 2. If 
w = 1, then, from 25 + k = w and £ > 1, we immediately obtain 5 = 0. For « = 2, again we must 
have 5 = 0, in view of 25 + k = n and k>\. Therefore, 5 = 0, and since we also have T = 1, it 
follows that t-2 T^=>t = 1. The proof is complete. 
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