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A well-known theorem of elementary number theory states: 
There exist infinitely many primes/? such that p = 1 (mod 4). (I) 

(See [1], p. 224.) 
One can prove (I) constructively by generating an infinite sequence {pn} of distinct primes 

such that pn = 1 (mod 4) for all n > 1. To obtain the sequence {pn}, let {un} be a sequence of 
natural numbers such that: 

(i) un>\ for all n > 1. 
(ii) Ifq is prime and q\un, then q = l (mod 4). 
(iii) (um, un ) = 1 for all m ̂  n. 

If we let pn be the least prime divisor of un for all n > 1, then the sequence {pn} yields the desired 
result. 

Let un =al+hl where an,bn are natural numbers such that (an,bn) = l and an # bn (mod 2). 
Then the sequence {un} satisfies (i) and (ii). If (iii) also holds, then {un} fulfills all our require-
ments. 

Customarily, one lets un = <f>n=22 +1, the n^ Fermat number. If n > 1, then 

^ = (22"-')2
+l2, 

where 22 and 1 are relatively prime and of opposite parity. Since it is also true that {/pm9 (f>n) 
- 1 for all m^n,we are done. 

An alternative procedure utilizes the Fibonacci sequence {Fn} or, more precisely, an infinite 
subsequence thereof. We need the following properties of Fibonacci numbers: 

Fik+l = FZ+F*+l. (1) 

(.Fm>Fn) = F(m,r,y ( 2 ) 

2\F„ iff 3|/i. (3) 
If n > 3, then F„ > 1. (4) 

(See [2].) 
Suppose we number the primes starting with 5 as follows: q{ = 5, q2 = 7, q3 = 11, etc. Let 

u„ = Fq for n > 1. Now (1) implies 

^ = 4^) + F k + 1 ) f o r a 1 1 ^ 1 

Since (X (?„ -1), X (q„ +1)) = 1, (2) implies 
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Since qn > 3 and qn is prime by definition, (3) implies 2 j i ^ , so 

Finally, if m * n, then qm * qn, so (qm,q„) = l Therefore, (2) implies (Fqm ,FqJ = 1. 

In summary, an infinitude of primes/? such that p = 1 (mod 4) can be obtained by considering 
the least prime divisors of the various Fibonacci numbers Fq, where q is prime and q > 5. 
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