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PROBLEMS PROPOSED IN THIS ISSUE 

H-486 Proposed by Piero Filipponi, Rome, Italy 

Let the terms of the sequence {Qk} be defined by the second-order recurrence relation Qk = 
^Qk-\ + Qk~2 W^h initial conditions Q> = 2i = 1. Find restrictions on the positive integers n and m 
for 

T{n,m)-1^-
k=\ m 

to converge, and, under these restrictions, evaluate this sum. Moreover, find the set of all couples 
(«,-, mt) for which T{nt, mt) is an integer. 

H-487 Proposed by Stanley Rabinowitz, MathPro Press, Westford, MA 

Suppose Hn satisfies a second-order linear recurrence with constant coefficients. Let {a,} 
and {/?}, i = 1,2,..., r, be integer constants and let f(x0, xlt x2,..., xr) be a polynomial with integer 
coefficients. If the expression 

/ (v V » ^Qln+bx J ^a2n+b2 > • • • > ^arn+br ) 

vanishes for all integers n> N', prove that the expression vanishes for all integral n. 
[As a special case, if an identity involving Fibonacci and Lucas numbers is true for all positive 

subscripts, then it must also be true for all negative subscripts as well.] 

SOLUTIONS 

Characteristically Common 

H-470 Proposed by Paul S. Bruckman, Everett, WA 
(Vol 30, no. 3, August 1992) 

Please see the issue of The Fibonacci Quarterly shown above for a complete presentation of 
this lengthy problem proposal. 
Solution by the proposer (continued from Vol 32, no. 1) 

Proofs of parts (A) and (C) were given in the above issue of this Quarterly. 
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Proof of Part (B): We see that U[r) is a special case of H[r). Making the substitution 
H[r) = U[r) into part (C), the result follows at once. 

Note: Although not required in the problem, we may obtain some interesting identities by 
taking determinants in the foregoing results. Moreover, special cases of Gr(z) yield identities for 
the Fibonacci, Pell, Tribonacci, and Quadranacci numbers, some of which have already been 
studied extensively. For example, if G2(z) - z1 - z -1, we obtain 

0f»-({ J) and W-{%: £ ) . 

In the general case, pr(0) = |-C/Jr)|= (-l) rVi( r ) 1= (-1)1 ̂ i(r) 1= Gr(°) = ~ar-u whence the result: 

|£7}r)|=(-irVi- (**) 
Taking determinants in parts (B) and (C), we obtain 

l ^ h H ^ V r - i ) " ; (***) 
\H^ |= (-l)(n-1Xr-1)(ar_ir1|^r) |. (****) 

Of course, (****) is a generalization of (***). Again, special cases of (****) yield some well-
known results, e.g., Fn+lFn_x - F„2 = (-1)". 

It is informative to apply the foregoing results for a special case which, however, has not 
been studied extensively. We will take r - 3 and G3(z) = z3 - 2z2 - z -1. We will choose H^- 's 
so that, for j = 1,2,3, n = 0,1,2, we have U%)+H%]. = 1. We form the following brief table of 
values: 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

unA 

0 
0 
1 
2 
5 
13 
33 
84 
214 
545 
1388 

Un,2 

0 
1 
0 
1 
3 
7 
18 
46 
117 
298 
759 

u„,3 

1 
0 
0 
1 
2 
5 
13 
33 
84 
214 
545 

Hn,\ 

1 
1 
0 
2 
5 
12 
31 
79 
201 
512 
1304 

Hn,2 

r~ 0 
1 
3 
7 
18 
46 
117 
298 
759 
1933 

H",3 

o~1 1 
1 
3 
8 
20 
51 
130 
331 
843 

2147 

We omit the superscript "(3)" for brevity. Then \U{ |= 1 and 1/Tj |= 2, as we may verify; hence, 
\Hn\=2 for all n. This may be left in determinant form or expanded into a sum of terms 

where i, j , k = 1,2, 3 in some order, and s is the minimum number of binary interchanges of digits 
required to obtain the triplet (/, j , k) from the initial triplet (1,2, 3). This sum then must equal 2. 
Clearly, many such identities may be devised. 
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Xl t 
H-471 Proposed by Andrew Cusuniano & Marty; Samberg, Great Neck, NY 

(Vol 30, no. 4, November 1992) 
Starting with a sequence of four ones, build a sequence of finite differences where the number 

of finite differences taken at each step is the term of the sequence. That is, 
Sx S2 S3 

1 1 1 1 1 1 1 1 1 1 1 1 
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1 2 4 7 11 16 1 2 4 7 11 16 
1 2 4 8 15 26 42 

Now, reverse the procedure but start with the powers of the last row of differences and continue 
until differences are constant. For example, if the power is two, we have 

1 4 9 16 25 1 4 16 49 121 256 etc. 
3 5 7 9 3 12 33 72 135 

2 2 2 9 21 39 63 
12 18 24 

6 6 
The sequence of constants obtained when the power is two is 2, 6, 20, 70, ..., while the sequence 
of constants when the power is three is 6, 90, 1680, 34650, .... 

Let TV be the number of the term in the original difference sequence and M be the power used 
in forming the reversed sequence. Show that the constant term is 

(N-M)\ X{N,M)=yi\TZ>\ # = 1,23,..., M = 2,3,4,. 

For example, X(2, 3) = f = 90. 

Solution by Paul S. Bruckman, Edmonds, WA 

Let 0kfN denote the k^ term of row SN (k = 1,2, 3,...). For example, S2 = (1, 2,4, 7,11, 
16,...) and 04 2 = 7. By definition, we are to have: 

@k+\,N~@k,N =@k,N-l> 0 ) 

0*fo = l for all it, and (2) 

6lN = l, # = 1,2,3,.... (3) 

Successive "finite integration" of (1), beginning with (2) and using (3), yields 

We note that 6k N is a polynomial in k of degree N, whose leading term is equal to kN I N\. 
Then {0k^N)M is a polynomial in k of degree MN9 with leading term kMN /(N\)M. We then 
observe that X(N, M) = A ^ ( ^ N ) M = /^"(k™ I (N\)M), which yields 

K ' J (N\)M 
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Note: Four "I's" in the original sequence will no longer suffice to display the constant term 
X(N,M); the minimum number of "I's" required is MN-N + 1. As expected, we find that 
X{N,\) = \£OV2L\\N. 

Also solved by M. Deshpande. 
An Entry Level Job 

H-472 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol 30, no. 4, November 1992) 

Let Z(n) denote the Fibonacci entry point of the natural number n, that is, the smallest posi-
tive index t such that n\Ft. Prove that n = Z(ri) iff n = 5" or n = 12 • 5", for some u > 0. 

Solution by the proposer 

Proof: We make use of the following special values: 

Z(2r) = l i f r = 0, 3.2r~1ifr = lor2 , 3-2 r _ 2 i f r>3; (1) 
Z(3') = l i f s = 0, 4 3 ^ if^>l; (2) 
Z(5t) = 5t,t>0. (3) 

We will also make use of the following known facts regarding Fibonacci entry points: 

Z{pe) = pfZ(p), for all primes/?, where 0<f<e; (4) 
If n = fi& "-pf, then Z(n) = LCMtZ(rf«),Z(flp),..., Z(p?)]. (5) 

Since Z(12) = 12 and Z(5U) = 5", we see from (5) that Z(n) = n if n = 5U orn = 12-5". 
Conversely, first suppose that n = P, where P = 2r3s,r,s>0. If r > 3 a n d s > l , then 

Z(P) = 2max(r-2'2)3max(*-U); we see by inspecting the exponent of 2 that z(P) = P is impossible. 
We may enumerate the remaining possibilities for r and s in the following table: 

P Z(P) 

2°3° = 1 
2°3S, s > 1 
213° = 2 
2131 = 6 
2l3s,s>2 
223° = 4 
223' = 12 
223*,s>2 
2r3°,r>3 

1 
22y-l 

3 
12 

223s_1 

6 
12 

223s"' 
2 r - 2 3 l 

We see that n-P- Z(P) only if w = 1 or 12. Moreover, if we assume that n = i3 • 5", we see that 
n = Z(ri) onlyif« = 5Morl2-5", */>0. 

Next, we suppose that n = P5uQ, where gcd(g, 30) = 1 and Q > 1. Suppose g has the 
prime factorization: Q = fl^i <jf; let # = max(^, #2,..., qa) and ̂  || <g. Now Z{qe) = qfZ(q), 
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where 0<f<emdZ(q) is divisible only by primes smaller than q [since Z(q)<q + 1 and 
gcd(^, Z(q)) = 1; also, q + 1 is even]. A fortiori, the same is true for the other Z(g;.)'s. We there-
fore see that qe \\n and qf\\Z(ri), which shows that n * Z(n). 

This exhausts the possibilities, and the problem is solved. 

Another Equivalence 

H-473 Proposed by A. G Schaake & J. C Turner, Hamilton, New Zealand 
(Vol 30, no. 4, November 1992) 

Show that the following (see [1], p. 98) is equivalent to Fermat's Last Theorem: "For n > 2 
there does not exist a positive integer triple (a, b, c) such that the two rational numbers - , - , with 

s Q 

r = c-a. p = b-\ 

; = 1 z = l 

are penultimate and final convergents, respectively, of the simple continued fraction (having an 
odd number of terms) for —." 
Reference 
1. A. G. Schaake & J. C. Turner. New Methods for Solving Quadratic Diophantine Equations 

(Part I and Part II). Research Report No. 192. Department of Mathematics and Statistics, 
University of Waikato, New Zealand, 1989. 

Solution by Paul S. Bruckman, Edmonds, WA 

Suppose there exists a positive integer triple (a, b, c) such that if/?, q, r, and s are as defined 
in the statement of the problem then 

j = [0„02,...,#„,_,] and | = [ ^ , ^ , . . . , ^ - 1 , ^ ] , (1) 

for some sequence 0ly 02, .-.,0m of positive integers, where m > 3 is odd. The notation [$1? 02, ..., 
0k] represents the value of the simple continued fraction (s.c.f) = 0l + l/02 + l/03-\ v\l 0k, 
k = l,2,...,m, also known as the k^ convergent of the s.c.f. for p/q. 

Since r/s and p/q are supposed to be finite rationals, we require that s> 0, q > 0; moreover, 
we are interested only in positive rationals, so we require that r > 0 and/? > 0. Hence, we suppose 

b> 1, c>a. (2) 

Since r/s and p/q are successive convergents of a s.c.f, and since m is odd, we must have 
rq-ps = l. (3) 

We now note that 
b —I c -a /r. ^ ~x /yix 

s- ? q- (for some ?? > 2). (4) 
b-l c-a 

Then rq - ps - en - an - (bn -1) = 1, which implies 
cn=an+bn. (5) 
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Thus, our assumption implies that (a, b, c) satisfies Fermat's Last Theorem. 
Conversely, suppose that there exists a positive integer triplet (a, h, c) which satisfies (5) for 

some n>2, i.e., suppose Fermat's Last Theorem is false. If b - a, then c/a = 2l/n, which is 
patently impossible; thus, without loss of generality, we may suppose b < a. Let p, q, r, and s be 
as defined in the statement of the problem. We seek to prove that/?, q, r, and s satisfy (1) for 
some m>3 odd, and some sequence 0l,92,...i6m of natural numbers. We note that rq-ps-
cn~an- (bn -1) = (cn -a"-b") + l, which is the statement of (3). Hence, 

r I s-pl q-\l qs. (6) 

According to a well-known theorem of continued fraction theory (e.g., Theorem 184 in [1]), if 
r/s-p/q<l/2s2, then (1) holds. Therefore, in order to establish (1), it suffices to show that 
l/qsKl/ls1, or 

q>2s. (7) 
Now we note that 

9 = l y - 1 ^ > X^"1^-7 = nan~ n-l 
A u — nu 

7 = 1 / = 1 

Also 

Thus, 

n n an -1 an 

' ~ S^"~7 < X a " _ / ~ < (using the assumption that b<a). 
,-=i t=i a ~ l a ~ l 

. n{a-\) , 
qls>-± L. (8) 

Since a>ft>l , thusa>3. Also, n>3. Thus, q/s>3-2/3 or 

qls>2. (9) 
This establishes (1). 

Thus, the negative of Fermat's Last Theorem is equivalent to the negative of the statement of 
the problem. It follows that Fermat's Last Theorem is equivalent to the statement of the problem. 
Reference 
1. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. 4th ed. Oxford: 

The Clarendon Press, 1960. 
Also solved by the proposers. 
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