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Let p = p(x,, x,, ..., x,) be a polynomial with positive integer coefficients. In this paper we
shall discuss some methods for generating solutions for the equation

2 _ 2
p+y =z (M
The approach we use is to start with a method for generating solutions for the equaiton

x*+y?=2? ()

b

and show how the method is extended to equation (1) or to special cases of (1).

1. THE RULE OF PYTHAGORAS AND THE RULE OF PLATO

According to Dickson [1], it was Pythagoras who showed that, if we start with the odd
integer a, let b = %(a2 —1) and c=b+1, then (a, b, ¢) is a solution of (2).

Again, according to Dickson [1], it was Plato who showed that, if we start with the even
integer a, let b = %az —1and c=b+2, then (a, b, ¢) is also a solution of (2).

The methods of Pythagoras and Plato are extended to (1) by the following proposition.

Proposition 1: Let a,a,, ..., a, be positive integers and let a = p(a,, a,,...,a,).

i Ifaisodd, letb= %(a— 1) and c=b+1, then (a,,a,, ...,a,,b, c) is a solution of (1).
ii. fa=0(mod4), letb=;a—1andc=>b+2,then (ay,a,,..,a,,b,c) is a solution of (1).
iii. If a=2 (mod 4), then it is impossible to find integers b and c such that (a,,a,,...,a,,b,c) is
a solution of (1).

Proof: For i and ii, write ¢* — b7 as (c—b)(c+b), substitute and simplify. If a =2 (mod 4),
then, for integers b and ¢, a+b* =2 or 3 (mod 4) depending on whether b is even or odd, respec-
tively, but ¢* =0 or 1 (mod 4) depending on whether ¢ is even or odd, respectively.

2. THE METHOD OF RECURSION

Let (a,b,c) be a solution of (2). Letd=c-b, ay=a+d,by=a+b+%, andc, =b +d In
[2] T showed that (a;, b;,c;) is also a solution of (2). Let us call this method the "method of
recursion." The following proposition extends the method of recursion to the equation

ko +kyxk +- 4k xk +m+y? =22 3)

Proposition 2: Let (a,,a,,...,a,,b,c) be a solution of equation (3) and let d =c—b. Fori=1
to n define
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a=a +d, b':Ekiai+b+dZ2k’ ,and ¢'=b"+d.

Then (a,a;,...,a,,b’, ') is also a solution of (3).
Proof: Substitute a, +d for a/ and simplify to obtain
Tk, (a])’ = Tk,(a, +d)? = Ska? +2dTka, +d Tk,
Substitute ¢ — b* —m for Tk,a?, write ¢* —b* as d(c+b), and factor out d to obtain
d(c+b+22Zka, +dZk)—m.
Substitute 25’ —2b for 2Zk,a; +d2k; to obtain
d(c+b+2Zka +dik)-m=d(c-b+2b")—m.
And since c—b=c’'-b' =d, we obtain
d(c—b+2b")—m=(c")? - (b") —m.
Note that when dZk, is odd we do not obtain integer solutions (see Example 1 below). In this

case, apply the recursion twice to obtain the following corollary.

Corollary Let (a,,a,,...,a,,b,c) be a solution of equation (3) and let d=c-b. Fori=1ton

define
a/=a,+2d, b'=2Zk(a, +d)+b, and ¢'=d"+d.
Then (aj,a;, ...,a,,b’, c’) is also a solution of (3).

e Uy

The following example illustrates the use of Proposition 1, Proposition 2, and its Corollary.

Example 1: Suppose we begin with the equation
2x12+x§+2x32+4+y2:22. 4
If we let x; = x; =1and x, = 2, then, by Proposition 1, (1, 2, 1, 2, 4) is a solution of (4). Here,
d=4-2=2.Applying Proposition 2, we have
a; =3, a;=4, a;=3,
b'=2-1+1-2+2-1+2+
¢’ =15

Hence, (3, 4, 3, 13, 15) is also a solution of (4).
If we let x; = x, = xy =1, then, by Proposition 1, (1, 1, 1, 4, 5) is a solution of (4). Here,
d=5-4=1 Applying Proposition 2, we have

13

>

22+1+2)
2

r_ r r_
al=2, ay=2, a;=2,

b’=2-1+1-1+2-1+4+w:—2§3—,
25
==
2
Hence, (2, 2, 2,223,%) is also a solution of (4).
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In this case, the solution is not an integer solution. However, if we apply the Corollary to
Proposition 2, we obtain
al=3, a=3, a;=3,
b'=2(2-2+1-2+2-2)+4 =24,
c¢'=25.

Hence, (3, 3, 3, 24, 25) is also a solution of (4).
3. THE METHOD OF MATRICES

In [3], Hall showed that, if we mutliply a solution (a,b,c) of (2) by any of the following
three matrices, the product is also a solution of (2).

1 -2 2 1 2 2 -1 2 2
2 -1 2 2 1 2 -2 1 2
2 -2 3 2 23 -2 2 3

Let us call this method the "method of matrices." The following proposition extends the method
of matrices to the equation

me +y*+m=2". (5)

Proposition 3: Let (a, b, c) be a solution of equation (5).

i. Ifn=2k,the product of (a, b, c) and any of the following three matrices is also a solution of

(5).
1 -1 1 1 1 1 -1 1 1
2k 1-k  k 2k k-1 k 2k k-1 k
2k -k k+1 2k k k+1 -2k  k k41
ii. Ifn=2k+1, the product of (a, b, ¢) and any of the following three matrices is also a solution
of (5)
1 -2 2 1 2 2 -1 2 2
2n 1-2n 2n 2n 2n-1 2n -2n 2n-1 2n
2n  -2n  2n+1 2n  2n  2n+1 -2n  2n  2n+1
(Note that when 7 = 1 we obtain Hall's matrices stated above.)
Proof: Equation (5) is a special case of equation (3). By Proposition 2, with k, = n,
a'=a+d, b= na+b+%, and ¢’ =b"+d,

is also solution of (5). Let n =2k, substitute ¢ —5 for d, and simplify to obtain

a'=a-b+c,
b"=2ka+(1-k)b+ke,
¢’ =2ka—kb+(k+1)c.

1 -1 1 a
2k 1-k  k bl
2k -k k+1}||c

In matrix form, this becomes
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To obtain the second matrix, note that, if (a, b, ¢) is a solution, then so is (a, —b, ¢). Hence

1 -1 1 a
2k 1-k &k -b
2k -k k+1|| c
is also a solution. But

1 -1 1 a 1 -1 1 1 0 Of|la
2k 1-k &k -b|=(2k 1-k £k 0 -1 0flb|
2k -k k+1]| ¢ 2k -k k+1]|10 0 1f|c

The third matrix is obtained similarly.
When n =2k +1, we use the Corollary to Proposition 2.

The following example illustrates the use of Proposition 1 and Proposition 3.
Example 2: Suppose we begin with the equation
2x? +y? = 2%, (6)

By Proposition 1, (2, 1, 3) is a solution of equation (6). Since » is even, by Proposition 3 the

matrices
1 -1 1 1 11 -1 1 1
2 0 1 2 0 1 -2 0 1
2 -1 2 21 2 -2 1 2

and the triple (2, 1, 3) will generate the solutions (4, 7, 9), (6, 7, 11), and (2, -1, 3), respectively.
If we begin with the equation

3x? +y2 =22, @)

then, by Proposition 1, (1, 1, 2) is a solution of equation (7). Since » is odd, by Proposition (3)

the matrices
1 -2 2 1 2 2 -1 2 2
6 -5 6 6 5 6 -6 5 6
6 -6 7 6 6 7 -6 6 7

and the triple (1, 1, 2) will generate the solutions (3, 13, 14), (7, 23, 26), and (5, 11, 14), respec-
tively.
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