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The object of this paper is to present a bracket function transform together with its inverse
and some applications. The transform is the analogue of the binomial coefficient transform dis-
cussed in [2]. The inverse form will be used to give a short proof of an explicit formula in [1] for
R, (n), the number of compositions of » into exactly k relatively prime summands.

Theorem 1—Bracket Function Transform: Define

so=3 2 =3 T, (1)

k=1 Jj=14d|j
d(x) =Y x"4,, o)
n=1
and
S(x)=D x"S,. 3)
n=1
Then
J x"
I(x) = A . 4
(x) l_xZ,l T 4)
Proof: We need the fact that
| n n—k 1
- = k21, |x|<1, 5
n§k|:k}‘ (1-x)(1-x") u )
which is easily proved and is the bracket function analogue of the binomial series
, k=1, L 6
(k)x Ta- x)(l oa_np F2b < ©)

Relations (5) and (6) were exhibited and applied in [1] for the purpose of establishing some
number theoretic congruences.
By means of (5) we may obtain the proof of (4) as follows:

e

n=1 k=1
o 0 _ o0 1
:z@ﬂzﬁ}”=zw@_____ﬂ
k k=1 (l—x)(l—xk)
which completes the proof.
Note that (4) does not turn out as nicely as the corresponding result in [2] because we now
have 1-x* instead of (1-x)*, which is the striking difference between (5) and (6). As a result,
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we are not able to express F(x) as some function multiplied times ${(x) as we did in [2]. Never-
theless, the result does express & in terms of 4 instead of S.

Transform (1) may next be inverted by use of the Mbius inversion theorem, but this requires
some care. Here is how we do it:

So)-Sr-1)=3 -’Z}A —H["—‘I}A,
(m—-Sn-1) E[k % Z I k

k=1

S(m)-S(n-1) = g{[g]—[’%l}} 4,. 0
S
2T 1T itk

S(m)-S(n-1D=3 4, (8)

dn

or just

However,

so that we find the relation

which may be inverted at once by the standard Mobius theorem to get

n
400 =3 i 3 Jis@)- 5@~} ©
din
It is easy to see that the steps may be reversed and we may, therefore, enunciate the bracket
function inversion pair as

Theorem 2—Bracket Function Inverse Pair:

n n n
S(n) = Z[ﬂ A=) > 4, (10)
k=1 j=1 dlj
if and only if
n
400 =3 o 5 5@ty an
din
This inversion pair is the dual of the familiar binomial coefficient pair
~(n
S(n)= ;Z’;)(k)Ak (12)
if and only if
A, =S (-1)* (Z)S(k). (13)
k=0
Sometimes it will be convenient to restate the pair (10)-(11) as
Theorem 3:
n n . n
Sfn k)= Z{—.]g(}, ky=3 2.8 k)
j=iLJ j=1 dlj
if and only if
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8. 0)= Yl 5 )@ b-s =10} (13)

din

We will apply this form of our inversion theorem to give a short proof of a formula in [1]. In
that paper the expansion

(,’i)zi[ﬂ&m:i 3 Re(d) (16)

J=1 Jj=1 d|j
dzk

was first proved, where R, (n) = the number of compositions of » into exactly & relatively prime
positive summands, i.e., the number of solutions of the Diophantine equation n=a, +a, +a;+
--+a, where1<a,<nand (a,,a,,a;,...,a,)=1
Applying (14)-(15) to this, we obtain

R e )

which proves the desired formula for R, (n).
The series (11) may be restated in the form

A, =Zn:H,fS(k), (17
k=1

but it is awkward to give a succinct expression for the H; coefficients. To obtain these numbers,
however, we may proceed as follows. From (11), we have

A(n) = Zﬂ( d)S(d) Z/{ d)S(d n= Z;{ d)S(d)— Y u( - 1)S<d)

din din din (d+1)n

S I Ve N M-

so that we have the following explicit formula for the A coefficients:

- HE M e

Ordinarily, S(0) from (1) has the value 0; however, it is often convenient to modify (1) and
define

S(n) = l+i[—Z—]Ak (19)
k=1

so that §(0) = 1. With this train of thought in mind, we present a table of H} for 0<k <n, n=
0(1)18, so that the table may be used for either situation. Thus, the O-column in the array will be
given by —u(n), but with H? =1.

A way to check the rows in the table of values of HJ is by the formula

n

> H} = p(n) forall n>1, (20)
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which, in a sense, gives a new representation of the Mobius function. The proof is very easy. In
expression (11) of Theorem 2, just choose S(») =1 for all n>1. This makes A(n) = w(n) for all
n>0. But then, by relation (17), we have result (20) immediately.

A Table of the Numbers H; for 0 <k <n, n=0(1)18

n
0 1

1(-1 1

211 -2 1

311 -1 -1 1

410 1 -1 -1 1

51 -1 0 0 -1 1

6(-1 2 0 -1 0 -1 1

771 -1 0 0 0 0 -1 1

8 06 0 0 1 -1 0 0 -1 1

910 0 1 -1 0 0 O 0 -1 1

10({-1 2 -1 0 1 -1 0 0 0 -1 1

i1y 1 -1 0 0 0 O O O O 0 -1 1

20 -1 1.1 -1 1-1 0 O O 0 -1 1

31 -1 0 0 0 O O O O GG O O -1 1

4(-1 2 -1 60 0 0 1 -1 0 O O O O -1 1

i5{-1 1+t 1-1 1-1 0 0 O O O O O O -1 1

o0 0 0 0 0 0 0 1 -1 0 0 O O O O -1 1
7|1 -1 0 0 0 0 O O O O O O O O O O -1 1
8y 0 0 -1 1 0 1 -1 o0 1 -1 0 0 O 0 0 0 0 -1 1
k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

If we adopt the convention that H] = —u(n), but with Hy =1, then (20) may be reformu-
lated to say that

Y H; =0, forall n>1. 21)

k=0

The author wishes to acknowledge helpful comments by the referee, especially some correc-
tions to the table of values of the H coefficients.
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