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1. INTRODUCTION 

The "Golden polynomials" {Gn{x)} (defined in [2]) are Fibonacci polynomials satisfying 

Gn+2(x) = x-Gn+l(x) + Gn(x) (1) 

for n > 0, where GQ(x) - - 1 and Gl(x) = x-l. The maximal real root, gn, of the function Gn(x), 
can be considered to an nth -dimensional golden ratio. 

Our concern here is the study of the sequence {gn} of "golden numbers." A computer 
analysis of this sequence of roots indicated that the odd-indexed subsequence of {gn} was 
monotonically increasing and convergent to % from below, while the even-indexed subsequence 
was monotoni-cally decreasing and convergent to % from above. 

In this paper, the implications of the computer analysis are proven correct. In the process, a 
number of lesser computational results are also developed. For example, the derivative of G'n(x) 
is bounded below by the Fibonacci number Fn+l on the interval [%, °°). 

2. EXISTENCE 

We begin with a simple yet use&l formula. 

. 3 ^ (l 
Formula 2,1: G„ , 2 ; \2, 

Proof: The formula is readily verified for n = 1 and n = 2 by direct computation: 
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We proceed by induction assuming the proposition is true for all indices less than n\ 
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While suggestive, this is not sufficient to show the desired result about the convergence of the 
roots. For example, these same properties hold for the sequence of functions 

/ „« = -! ' M N Y 

However, these roots remain at l/2 and 5/2 for all values of n and do not converge to %. 

Gn(x)for « = 2,...,17 fH(x)for #f = 2,...912 

Throughout this paper we will limit our discussion to polynomial functions with positive 
leading coefficient. These functions have the following easily proven properties. 

Lemma 2.2: 
A. If r is the maximal root of a function/, then f(x) > 0 for all x> r. Conversely, if f(x) > 0 

for all x > t, then r<t. lff(s) < 0, then s<r. 
B. Suppose R is an upper bound for the roots of the functions fi(x),f2(x),...,f„(x), and the 

functions u0(x), ux(x)9 u2(x), ...,un(x) have no positive real roots. Then R is also an upper 
bound for the roots of the function f(x) defined by 

/ ( * ) = /„ (* ) ' «n(x) + L-l(X) * Un-l(X) + ' * * + / l t o • Ul(X) + Uo(Xl 

To demonstrate the existence of the sequence {gn}, we will require two minor results from 
[1]. First, from Corollary 2.4, G„(l) = -Fn_x and G„(-l) = ( - 1 ) " ^ [where Fn_x is the (n- l)th 

Fibo-nacci number and Ln_x is the (n-\)th Lucas number]. Second, from Corollary 4.3, each 
Gn{x) is monic with constant term -1. 

Proposition 2.3: Existence of {gn } 
For each n > 1: A. Gn{x) has a maximum root gn in the interval (1, 2). 

A G„(x) has no rational roots. In particular, each gn is irrational. 
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Proof: 
Part A. Since each G„ is monic and G„(l) = -Fn_l < 0, then G„(x) must have a root larger 

than 1 (Lemma 2.2 A). Since gn is the largest root by definition, we have gn>\. 
By direct computation, Gx{x) and G2(x) are strictly positive on the interval [2, oo). Using 

the recursive relation (1) and an inductive argument, it is easy to see that each G„(x) is strictly 
positive on [2, oo). Therefore, gn < 2 (Lemma 2.2A). 

Part B. Suppose r is a rational root of G„(x), say r = b/c. Then G„ would be divisible by a 
linear factor of the form (cx-b). In this case, b would divide the constant term o f -1 , and c 
would divide the leading coefficient of+1. The only possibilities are ±(x -1) and ± (x +1), which 
indicate G„(x) has a root of +1 or - 1 , respectively. However, Gn(l) = -Fn_l and G„(-l) = 
(-l)nLn_v Hence, G„(x) has no rational roots. • 

3. EVEN/ODD DISTINCTIONS 

It is useful to note that when n is odd, G„(x) can be expressed entirely in terms of smaller 
odd-indexed functions and the seed function G0(x). Similarly, when n is even, we can write 
Gn(x) in terms of smaller even-indexed functions and the seed function Gx(x). Specifically, by 
repeated substitution, we obtain 

Formula 3.1: 
*• G2„+1(x) = (x2+l)G2?7_1(x) + x2G2w_3(x) + ---+x2G1(x) + xG0(x). 
b. G2/7(x) = (x2+l)G2w_2(x) + x2G2„_4(x) + ---+x2G2(x) + xG1(x). 

We can now show that % is an upper bound for all of the odd-indexed gn and a lower bound 
for the even-indexed gn. 

Observation 3.2: g2n-i <}i<S2n^or a^ n>®-
Proof: 
Case: Even Indices. {3/2 < g2n) 

By Formula 2.1, G2„(%) - -2~2n < 0. Since gn is defined to be the largest root of G„(x), 
the result is indicated by Lemma 2.2A. 

Case: Odd Indices. (g2n-\ < %) 

Note that gi = l<}2. Assume then that the proposition is true for g2k_x for k <n. Using 
Formula 3.1, we write 

G2n+l(x) = (x2+l)'G2n_l(x) + x2-G2n_3(x) + -' + x2'Gl(x) + x. 

We can apply Lemma 2.2B because the functions x, x2, and (x2 + 1) have no positive roots, and 
Y2 is an upper bound for the roots of the G„(x) on the right side. • 
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4. MONOTONICITY 

Formula 4.1: Gn+k(g„) = (-l)k+1 G„_k(g„). 

Proof: 
k= 1. Write (1) in the form G„+1(x) = x-G„(x) + Gn_1(x), and evaluate at x = gn, noting that 

G„(gn) = 0. 
k = 2. Write (1) in the forms Gn(x) = x • G^(x) + Gn_2 (x) and G„+2 (x) = x • Gw+1 (x) + G„ (x). 

Now plug in x = gn and note that Gw_1(g„) = GM+1(gw) (the case of * = 1) to get Gw_2(gn) = 

k <j. Now assume the proposition is true for k - 1,2,..., j -1 (holding /? fixed) and define A 
as the quotient 

^ =
G n + f c ( g W ) 

Gn-k(gnY 
We will show 4̂ = (-1);+1 to complete the proof. We can simplify A using (1) for the numerator 
and (1) solved for the last term, G„ = Gn+2 - x • G„+1, for the denominator: 

gnG„+j^ (gn) + Gn+J_2 (g„) gfi^j^ (gn) + G„+(j-2)\g„) 

G„-j+2(gn)-gnGn-j+l(gn) Gn-(J-l)(gn)-gnGn-<j-l)(En) 

Also define B and C and simplify using the validity of the formula for smaller values oik. 

B = G^j^igJ = Gn<J_l){g„) = ( - 1 ) J ' G H H ( ? , ) , 
C = G„+;_2(g„) = G„_0_2)(^„) = (-iy_1G„_0_2)(£„). 

Substituting 5 and C into the simplification of ,4, we get 

g„B + C _ gnB + C 
(-iy-lc-gn(-\yB (-iy+\c+g„B) 

This shows the formula to be valid for k-j. • 

Proposition 4.2: The subsequence of {g-„} with odd indices is a monotonically increasing 
sequence; and the subsequence with even indices is monotonically decreasing. 

Proof: 
Odd Indices. By direct computation, g3 > gl - 1. Assume the proposition holds up to g2k_x, 

that is, gx < g3 < - • • < g2fc-3 < #2*-i • Then G2k_3(g2k_l) > 0 (Lemma 2.2A). Using Formula 4.1, 

G 2 H l ( & - l ) = G(2£-l)+2(#2£-l) = -G(2k-l)-2(S2k-l) = ~G2k-3(S2k-l) < °-

G2jt+1 must have a root greater than g2k_l by Lemma 2.2A. It follows that g2fc+i > g2k-i • 

Even Indices. Note first that g2 = ( X >%• Since g2n_x <% (Observation 3.2), then 
G2n-\ O) > 0 on [%, oo). Rewriting (1), we have G2n - G2n_2 = x • G2n_x > 0 on \}/2, oo). Thus, 
G2n > G2n_2 for all x>3/2\ and G2„ has no root greater than g2n_2. But G2n()Q < 0 by Formula 

214 [JUNE-JULY 



THE LIMIT OF THE GOLDEN NUMBERS IS 3/2 

2.1. By the intermediate value theorem, there must be a root between 3/2 andg"2w_2. This root 
mustbe(g2„. D 

5, THE OBB-INBEXED CONVERGENCE 

We now know that the odd-indexed {gn} form a monotonically increasing sequence bounded 
above by %, and the even-indexed {gn} form a monotonically decreasing sequence bounded 
below by Y2. Thus, limits do exist for both subsequences. We need two additional lemmas. 

Lemma 5.1: The derivatives G2n_Y{x) are bounded below by F2n on the interval Qfrw-i*00)? 
where F2n is the (Irif1 Fibonacci number. 

Proof: Substituting for both G2n+l(x) and G2n_x{x) in Formula 3.1, we obtain 

G2n+1(x) - G2n_x(x) = [(x2 + l)G2n.l(x) + x2G2„_3(x) + • • • + x2Gx(x) + xG0(x)] 
- [(x2 + 1)G2„_3 (x) + x2G2w_5 (x) + • • • + x2Gx (x) + xG0 (x)] 

= (x2+l)G2n_l(x)-G2„_3(x). 

Solving for G2n+l{x) gives us G2n+l(x) = (x2 +2)G2„_1(x)-G2„_3(x). Differentiating gives 

G^n+l(x) = (x2 +2)G^_1(x) - G^_3(x) + 2xG2„_1(x). 

For x > g2n_h the last term is positive; thus, for all x > 1, 

G^+l(x)>(x2+2)G^_1(x)-G^_3(x)>3-Gln_1(x)-G^_3(x). (2) 

We compute 

G{(x) = (x-iy = l = F2, 
G3'(x) = (x3 - x2 -1)' = 3x2 - 2x > 3 = F4 (for x > g3 > 4l\ 
G5'(x) > 3G3'(x) > 3(3) - 1 = 8 = F6 (forx>g3). 

Using induction and the Fibonacci identity F2n = 3 • F2n_2 - F2n_4, (2) becomes 

G2n+i{x)>F2n+2. D 

Actually, the growth rates of these derivatives can easily be shown to be even greater, 
although they are adequate for our purposes here. We are ready to demonstrate that the odd-
indexed roots converge to 3/2J with the aid of the following simple lemma. 

Lemma 5.2: If polynomial functions f(x) and g(x) have the properties that f(b) = g{b) > 0 and 
ff(x) > $f(x) > 0 for all x in (a, b), then f(x) < g(x) on (a, h). Furthermore, if g has a root c in 
(a, b), then f(x) also has a root in (c, b). 

Proof: Let h(x) = f(x)-g(x). Then h'(x) =f'(x)-g'(x) > 0, which implies h(x) is 
increasing. Since h(x)<h(h) = 0 for all x in (a,/?), we have / ( x ) - # ( x ) < 0 and the first result 
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follows. If g(c) = 0, then f(c) < g(c) = 0. Since f(b) = g(b) > 0, / must have a root in the 
interval (c, b). • 

Proposition 5.3: The odd-indexed subsequence of {gn} converges to 3/2. That is, 

l i m £ 2 w - i = - -

Proof: Because the odd-indexed subsequence {g2n-i} is monotonically increasing and 
bounded above by %, we know that the limit exists and is less than or equal to Y2. We need only 
show it is no less than %. 

We apply Lemma 5.2, setting f(x) = G2n_l(x)mdg(x) = x-(3/2-22ri~l). We note that 
f(K) = g(3A) = 2"(2w_1) > 0 (Formula 2.1), and / ' (* ) = G!

2n_x{x) > F2n > 1 = g'(x) (Lemma 5.1). 
Since g(x) has a root at x = (%-22n~1), it follows that G2n_x{x) has a root in the interval 
(3A-22n~\3A)- Thus, Y2>g2n.l>y2-22n-1 for all n. D 

6. THE EVEN-INDEXED SUBSEQUENCE 

We now address the even-indexed subsequence in a somewhat analogous way. 

Lemma 6.1: The derivative G2n(x) is bounded below by the Fibonacci number F2n+1 on [%, oo). 

Proof: For x > %, G£ (x) = 2x - 1 > 2(%) - 1 = 2 = F3. Assume G'2n_2 (x) > F2„_1. Differen-
tiating (1) gives G2n(x)-x-G2n_l(x) + G2n_2(x)-\-G2ri_l(x).Keeping in mind that G2n_l{x)>F2n 

(Lemma 5.1) and Gln_l{y^) ̂  2~n > 0 (Formula 2.1 and Lemma 5.1), we write 

Combining Lemmas 5.1 and 6.1, we have the side result 

Corollary 6.2: G'n(x) > Fn+l on the interval [%, oo). 

Lemma 6.3: Suppose polynomial functions f{x) and^(x) have the properties f(a) = g(a) < 0 
and f'{x) > g'{x) > 0 for all x in (a, b). Then f(x) > g(x) on (a, b). Furthermore, if g(x) has a 
root c in (a, b), then f(x) also has a root in (a, c). 

Proof: Apply Lemma 5.2 to the functions -f(a + b-x) and - g(a + £ - * ) . D 

We can now show that the even-indexed roots converge to 3/2 from above. 

Proposition 6.4: The even-indexed subsequence of {gn} converges to Y2. That is, 

«-»°° 2 

Proof: Because the sequence {g2n} is monotonically decreasing and bounded below by %, 
we know that the limit exists and is no less than Y2. We need only show that the limit is no more 
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than Y2. Apply Lemma 6.3, letting f{x) = G2n(x) and g(x) = x - (% + 2~ln) • Then / ( % ) = 
g(Yi) =z-2~2n and f'(x) > F2n+l > 1 = g(x) (Lemma 6.1). Thus, f(x) = G2n(x) has a root inter-
val (X>% + 2"2 ' 7)- T h i s means that Y2<g2n <% + 22"_1 for all w / I 

7. CONCLUDING REMARKS 

While the golden numbers form an irrational sequence converging to l/2 with odd and even 
subsequences converging monotonically from below and above, respectively, there are other 
questions to consider. For example, computer analysis also yields the apparent approximation, 

which could be explored. Also, it is quite likely that these results can be extended to other Fibo-
nacci polynomial sequences. Many of the formulas and lemmas here relied only on the basic 
Fibonacci relationship (1) and not the specific definition of the particular functions {G„}. Possibly 
there is a number like Y2 for each Fibonacci polynomial sequence. 
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