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1. INTRODUCTION

The "Golden polynomials" {G, (x)} (defined in [2]) are Fibonacci polynomials satisfying

Gn+2 (x) =X Gri+1 (x) + Gn (x)

O

for n>0, where Gy(x) = -1 and G,(x) = x—1. The maximal real root, g,, of the function G,(x),

can be considered to an »n™-dimensional golden ratio.
Our concern here is the study of the sequence {g,} of "golden numbers."

A computer

analysis of this sequence of roots indicated that the odd-indexed subsequence of {g,} was
monotonically increasing and convergent to ¥ from below, while the even-indexed subsequence

was monotoni-cally decreasing and convergent to % from above.

In this paper, the implications of the computer analysis are proven correct. In the process, a
number of lesser computational results are also developed. For example, the derivative of G, (x)

is bounded below by the Fibonacci number F,,, on the interval [%, ).

2. EXISTENCE

We begin with a simple yet useful formula.

Formula 2.1: G, 3)-- l) .
2 2

Proof: The formula is readily verified for » =1 and n = 2 by direct computation:

o)1= w o)3m-(3)

We proceed by induction assuming the proposition is true for all indices less than n:
n-1 n-2
Gn i :ZGn—-l 2 +Gn—2 2 :i — __l +| — _l
2 2 2 2) 2 2 2
o N ! _nyn-1 Y n
_[3:D", ( 1)_2 = -y 322 _(_1)‘ 0
2" 2" 2" 2

Incidentally, it is apparent from this formula that

lim G, (3) = lim— (— l) =0.
n—>co 2 n—w 2
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While suggestive, this is not sufficient to show the desired result about the convergence of the
roots. For example, these same properties hold for the sequence of functions

fn(x) [ .(J_C___%b

However, these roots remain at %4 and 3 for all values of n and do not converge to %.

G,(x) for n=2,...,17 fo(x)for n=2,...,12

Throughout this paper we will limit our discussion to polynomial functions with positive
leading coefficient. These functions have the following easily proven properties.

Lemma 2.2:
A. Ifr is the maximal root of a function £, then f(x)> 0 for all x>r. Conversely, if f(x)>0
forall x>¢, then r <t. If f(s) <0, then s<r.

B. Suppose R is an upper bound for the roots of the functions f,(x), f,(x),..., f,(x), and the
functions u,(x), u,(x), u,(x), ..., u,(x) have no positive real roots. Then R is also an upper
bound for the roots of the function f(x) defined by

S )= 1,001, () + fr 1 (0) 4,1 (¥) + oo+ f(6) 241 (x) + 24 ().

To demonstrate the existence of the sequence { g, }, we will require two minor results from
[1]. First, from Corollary 2.4, G,(1) = —F,_, and G,(~1) = (-1)"L,_, [where F,_, is the (n—1)"
Fibo-nacci number and L, , is the (n—1)" Lucas number]. Second, from Corollary 4.3, each
G, (x) is monic with constant term -1.

Proposition 2.3: Existence of { g, }

Foreach n>1: A. G,(x) has a maximum root g, in the interval (1, 2).
B. G,(x) has no rational roots. In particular, each g, is irrational.
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Proof:

Part A. Since each G, is monic and G, (1) = —F,_, <0, then G,(x) must have a root larger
than 1 (Lemma 2.2A). Since g, is the largest root by definition, we have g, > 1.

By direct computation, G,(x) and G,(x) are strictly positive on the interval [2, ). Using
the recursive relation (1) and an inductive argument, it is easy to see that each G,(x) is strictly
positive on [2, ). Therefore, g, <2 (Lemma 2.2A).

Part B. Suppose 7 is a rational root of G,(x), say » =%,. Then G, would be divisible by a
linear factor of the form (cx—5). In this case, b would divide the constant term of —1, and ¢
would divide the leading coefficient of +1. The only possibilities are £(x —1) and +(x +1), which
indicate G,(x) has a root of +1 or —1, respectively. However, G,(1)=-F,_; and G,(-1)=
(-D"L,_,. Hence, G,(x) has no rational roots. [

3. EVEN/ODD DISTINCTIONS

It is useful to note that when n is odd, G,(x) can be expressed entirely in terms of smaller
odd-indexed functions and the seed function G,(x). Similarly, when 7 is even, we can write
G,(x) in terms of smaller even-indexed functions and the seed function G,(x). Specifically, by
repeated substitution, we obtain
Formula 3.1:

@ Gpa(¥) = (2 +1Gyrs (1) + ¥ Gy (9) -+ X2 Gy () +¥Gy (¥),

b.  G,,(x)=(x* +1)Gy, () + %G,y (x) + -+ +x°G, (x) + xG, (x).

We can now show that ¥ is an upper bound for all of the odd-indexed g, and a lower bound
for the even-indexed g, .

Observation 3.2: g,, , <% <g, foralln>0.

Proof:
Case: Even Indices. (¥ <g,,)

By Formula 2.1, G,,(3%)=-2"2"<0. Since g, is defined to be the largest root of G, (x),
the result is indicated by Lemma 2.2A.

Case: Odd Indices. (g,,.; <)

Note that g, =1<3. Assume then that the proposition is true for g,,_, for kK <n. Using
Formula 3.1, we write

Gt (¥) = (¢ +1)- Gpp (%) + 37 Gy (¥) - +27 - Gy (x) + .

We can apply Lemma 2.2B because the functions x, x*, and (x* +1) have no positive roots, and
3, is an upper bound for the roots of the G, (x) on the right side. 0
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4. MONOTONICITY
Formula 4.1: G, (g,)=(-D""G,_,(g,).

Proof:

k=1. Write (1) in the form G,,,(x) = x-G,(x) + G,_,(x), and evaluate at x = g,, noting that
G,(g,) =0.

k=2. Write (1) in the forms G,(x) =x-G,_;(x)+G,_,(x) and G,,,(x) =x-G,,;(x) + G, (x).
Now plug in x =g, and note that G,_,(g,)=G,,,(g,) (the case of k=1) to get G, ,(g,)=
_Gn+2 (gn )-

k <j. Now assume the proposition is true for k =1,2, ..., j—1 (holding » fixed) and define 4
as the quotient
_ Gn+k (g n)

Gn—k (gn)

We will show 4 = (~1)’*' to complete the proof. We can simplify A using (1) for the numerator

and (1) solved for the last term, G, = G,,,, —x-G,,,,, for the denominator:

A= gnGn+j—1(gn) + Gn+j—2 (gn) — gnGn+(j—1) (gn) + Gn+(j—2)(gn)
Gn—j+2 (gn) - gnGn—j+i(gn) G, -(j-2) (gn) - gnGn—(j—l) (gn)

Also define B and C and simplify using the validity of the formula for smaller values of £.
B= Gn+j—l(gn) = Gn—(j—l) (g.)= (“DjGn—(j—l) (g,
C= Gn+j—-2 (&)= Gn—(j—Z)(gn) = (‘l)j_lGn—(j—z)(gn)

Substituting B and C into the simplification of 4, we get

B g,B+C B g,B+C
-»'C-g,(-1YB (-)’*'(C+g,B)

= (D",

This shows the formula to be valid for k= j. O

Proposition 4.2: The subsequence of {g,} with odd indices is a monotonically increasing
sequence; and the subsequence with even indices is monotonically decreasing.
Proof:
Odd Indices. By direct computation, g; > g, =1. Assume the proposition holds up to g,,_,,
that is, g, < g3 <--- < gy,_3 <&y-1- Then Gy;_3(g,;-1) >0 (Lemma 2.2A). Using Formula 4.1,
Gop1(&241) = G(2k—-1)+2 (8a-1) = _G(Zk—l)—z (824-1) = ~Gop—3(824-1) <O

G,y+1 must have a root greater than g,, ; by Lemma 2.2A. It follows that g,, ., > g,,_;.

Even Indices. Note first that g, =)/ >3 Since g,, , <% (Observation 3.2), then
G,,1(x)>0o0n[%, o). Rewriting (1), we have G,,-G,, , =x-G,, ;>0 on [¥,o). Thus,
G,, > G,,_, for all x>%; and G,, has no root greater than g,, ,. But G,,(34) <0 by Formula
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2.1. By the intermediate value theorem, there must be a root between % and g, ,. This root

must be g,,. U

5. THE ODD-INDEXED CONVERGENCE

We now know that the odd-indexed {g,} form a monotonically increasing sequence bounded
above by ¥, and the even-indexed {g,} form a monotonically decreasing sequence bounded

below by 3. Thus, limits do exist for both subsequences. We need two additional lemmas.

Lemma 5.1: The derivatives Gj,_,(x) are bounded below by F,, on the interval (g,,_,, ),

where F,, is the (2n)™ Fibonacci number.
Proof: Substituting for both G,,,,(x) and G,,_,(x) in Formula 3.1, we obtain

G () = Gy (%) =[(6 + 1) Gy (¥) + %Gy (x) + -+ + X2 Gy (%) + XGy ()]
—[(% + )Gy (%) + X7Gps (%) + - + X7 Gy (%) +XGy ()]
= (¥* + )Gy (¥) = Gy s (%).
Solving for G,,,,(x) gives us G,,,,(x) = (x* +2)G,,_,(x) — G,,_5(x). Differentiating gives
G (%) = (¢ +2)G5,4 (¥) = G, 5(x) +2xG,,; (%),
For x> g,,_,, the last term is positive; thus, for all x> 1,
G2'n+1 (x) > (x2 + 2)G2'n-l (x) - G2,n—3 (x) >3- Gl’n—l (x) - G2’n—3(x)~
We compute
Gix) = (x-1y =1= 5,

Gijx) = -x* -1y =3x*—2x>3=F, (forx>g;> V2),
Gi(x) >3Gj(x)>3(3)-1=8=F; (forx>g;).

Using induction and the Fibonacci identity F,, =3- £, , — F;,_4, (2) becomes

G (¥) > Fypyy. U

2

Actually, the growth rates of these derivatives can easily be shown to be even greater,
although they are adequate for our purposes here. We are ready to demonstrate that the odd-

indexed roots converge to ¥, with the aid of the following simple lemma.

Lemma 5.2: If polynomial functions f(x) and g(x) have the properties that f(b) = g(b) >0 and
f'(x)>g'(x)>0 for all x in (a, b), then f(x)<g(x) on (a,b). Furthermore, if g has a root ¢ in

(a,b), then f(x) also has arootin (c, b).

Proof: Let h(x)= f(x)—g(x). Then A'(x)=f'(x)—g'(x)>0, which implies /i(x) is
increasing. Since A(x) < h(b) =0 for all x in (a,b), we have f(x)— g(x) <0 and the first result
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follows. If g(c)=0, then f(c)<g(c)=0. Since f(b)=g(b)>0, f must have a root in the
interval (c,5). O
Proposition 5.3: The odd-indexed subsequence of {g,} converges to ¥ . That is,

3

I ==,
nl_r::o 8an-1 2

Proof: Because the odd-indexed subsequence {g,, ,} is monotonically increasing and
bounded above by ¥,, we know that the limit exists and is less than or equal to %;. We need only
show it is no less than 3.

We apply Lemma 5.2, setting f(x)=G,, ,(x) and g(x) = x—(3%—-2*"""). We note that
G5 =g(3%)=2"*" >0 (Formula 2.1), and f'(x) = G},_,(x)> F,, >1=g'(x) (Lemma 5.1).
Since g(x) has a root at x=(3%-2>""), it follows that G,, ,(x) has a root in the interval
(3%-2"",%). Thus, % >g,,,>%—-2""" foralln. O

6. THE EVEN-INDEXED SUBSEQUENCE

We now address the even-indexed subsequence in a somewhat analogous way.
Lemma 6.1: The derivative G;,(x) is bounded below by the Fibonacci number F,,,; on [}, «).

Proof: For x>%, Gj(x)=2x-1>2(3%)-1=2=F. Assume G}, ,(x)>F,, . Differen-
tiating (1) gives G;,(x) =x-G;,_(x)+G;,_,(x)+G,,_,(x) Keeping in mind that G;,_(x) > F,,
(Lemma 5.1) and G,,_;(34)=2"" >0 (Formula 2.1 and Lemma 5.1), we write

G2'n (X) > (%) ' En + };‘Zn-l + 2-2’1_1 > F2n + En—l = F‘2n+1' u
Combining Lemmas 5.1 and 6.1, we have the side result
Corollary 6.2: G!(x)> F,,, on the interval [¥, ).

Lemma 6.3: Suppose polynomial functions f(x) and g(x) have the properties f(a)= g(a)<0
and f'(x)> g'(x)>0 forallxin (a,b). Then f(x)> g(x) on (a,b). Furthermore, if g(x) hasa
root ¢ in (a, b), then f(x) also has a root in (g, ¢).

Proof: Apply Lemma 5.2 to the functions —f(a+b—x) and —g(a+b—x). U

We can now show that the even-indexed roots converge to ¥ from above.
Proposition 6.4: The even-indexed subsequence of { g, } converges to %. That is,
limg,, = 3
e & = 2 :

Proof: Because the sequence {g,,} is monotonically decreasing and bounded below by ¥,
we know that the limit exists and is no less than ¥,. We need only show that the limit is no more
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than ¥. Apply Lemma 6.3, letting f(x)=G,,(x) and g(x)=x—(3%+27""). Then f(34)=
g4 =272 and f'(x)> F,y>1=g(x) Lemma 6.1). Thus, f(x)=G,,(x) has a root inter-
val (%, % +272"). This means that % < g,, <¥%+2""" foralln.

7. CONCLUDING REMARKS

While the golden numbers form an irrational sequence converging to % with odd and even
subsequences converging monotonically from below and above, respectively, there are other
questions to consider. For example, computer analysis also yields the apparent approximation.

& =+ A (=D,

which could be explored. Also, it is quite likely that these results can be extended to other Fibo-
nacci polynomial sequences. Many of the formulas and lemmas here relied only on the basic
Fibonacci relationship (1) and not the specific definition of the particular functions { G, }. Possibly
there is a number like ¥ for each Fibonacci polynomial sequence.
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