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This note describes an alternative approach to the proof in [2] of a representation theorem 
involving negatively subscripted Pell numbers P_n (w > 0), namely, 

Theorem: The representation of any integer N as 

N = f,aiP_i (1) 
/=1 

where at = 0,1,2 and az = 2 => ai+l = 0, is unique and minimal. 

To conserve space and avoid unnecessary repetition, we assume that the notation and results 
in [2] will be familiar to the reader. Our alternative treatment, however, requires the fresh result: 

2§(-l) , + 1P_, = - l + (-l)"(P_„ +P_I_1). (2) 
7 = 1 

Repeated use of the recurrence relation for P_n leads to (2). Observe [2] that in (2) 

q_„ = P„ + P„_x (9-i = ~\ % = 1* ft = !)• (3) 

Proof of the Theorem: Suppose there are two different representations 

N = fd
aiP-u ah^0,af=2^ai+l = 0 fa = 0,1,2) (4) 

/=i 
and 

m 

N = Y,biP-„ * m * < U = 2=>^+1 = 0 (^ = 0,1,2). (5) 
7 = 1 

Case I. Assume h = m, so that the Pell numbers in (4) and (5) are the same, but the coefficients 
a,,, bt are generally different. Write 

c,=a,-ft, (c ,=0,±l ,±2; i = l,2,...,m). (6) 

Subtract (5) from (4) to derive 
m 

£c,i>_,=0 by (6), (7) 
7 = 1 

that is, 
w - l 

cmP-m+ ^ ^ = 0 , (8) 
7 = 1 

whence, by (2), for a maximum or minimum sum, i.e., q = ±2 (/ = 1,2,...,/??-1), 

^ - « + ( - i r ( ^ + ^ * - i ) = i - w 
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[The notation of (3) may be used in (9).] We concentrate on cmP_m since this term dominates the 
sums (7)-(9). 

m even (P_m < 0): Here (9) gives 

( ^ + 1 ) ^ + ^ = 1. (9a) 
Now, in (9a), 

(i) cm = Q^> q_m = \ by (3) 
(ii) cffl = l o ilm + 1 = l 

(iii) cm--2=> ?-m+i = l by (3) 

where in (ii) and (iii) the recurrence relation for Pell numbers [2] has been invoked. 
m odd (P_m > 0): Here (9) gives 

( c ^ - l ^ - P ^ l . (9b) 

Next, in (9b), 
(iv) cm = 0=> -q-m^ by (3) 
(v) cm = l=> ~P-m-i = l 

(vi) cm=2^ P^-P.^^l 

All the equations (i)-(vi) involve contradictions. Of these, perhaps (ii) is the least obvious. 
Let us therefore examine (ii), which is true for m = 2 (even) leading to c2 = 1, cx = 2 from (ii) and 
(8). Now c2 = 1 = a2 - h2 implies that a2 = 2 (b2 = 1) or a2 - 1 (b2 = 0), i.e., a2 ^ 0, which contra-
dicts cx = 2 = ax -bx since this means that ax - 2 {bx - 0) and, hence, ax = 2 => a2 = 0 by (1). 
Thus, (i)-(vi) and, ultimately, (7) are impossible. 

Similar reasoning applies when cm=-l, - 2 . Consequently, the assumption in Case 1 is 
invalid. 

Summary of Case I Results: If h = m, then at = bt (i = 1,..., m), i.e., the representations 
(4) and (5) are identical, so that the representation (4), or (1), is unique. 

Case II: Assume h>m. Then four subcases exist, depending on the parity of h and m. From 
[2], with n standing for h and m, in turn, 

-P_n <N<-P_n_x n odd (10) 
and 

-P-n-i<N<>-P_n nevm. (11) 

These restrictions impose a range of values upon N for each integer n > 0, for example [2], 
n = \\ 0<N<2 
n = 2: -4<N<2 
n = 3: -4<N<12 (12) 
n = 4: -2S<N<\2 
n = 5: -2S<N<70, 

the number of integers [= sums (1)] being 3, 7, 17, 41, 99, in turn, which equal q^q^q^q^q^ 
respectively. 
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Results (10) and (11) reveal that each number N, as it occurs for the first time in the ranges 
(12), is represented uniquely and minimally. For instance, 

-3 = l-P_1+2-P_2+0-P_3+0-P_4+0-P_5 + ---

has unique and minimal representation 1 • P_x + 2 • P_2. We conclude that hi>m. Similarly, h £ m. 
Therefore, h = m, and Case 1 and the Summary are true. 

Combining all the preceding discussion, we argue that the validity of the Theorem has been 
justified. 

See [2] for further relevant information and [1] for an analogous treatment of representations 
involving negatively subscripted Fibonacci numbers. 

REFERENCES 

1. M. W. Bunder. "Zeckendorf Representations Using Negative Fibonacci Numbers." The 
Fibonacci Quarterly 30.2 (1992): 111-15. 

2. A. F. Horadam. "Unique Minimal Representation of Integers by Negatively Subscripted Pell 
Numbers." The Fibonacci Quarterly 323 (1994):202-06. 

AMS Classification Numbers: 11B37, 11A67 

NEW EDITORIAL POLICIES 
The Board of Directors of The Fibonacci Association during their last 
business meeting voted to incorporate the following two editorial policies ef-
fective January 1, 1995: 

1. All articles submitted for publication in The Fibonacci 
Quarterly will be blind refereed. 

2. In place of Assistant Editors, The Fibonacci Quarterly 
will change to utilization of an Editorial Board. 
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