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1. INTRODUCTION 

Hoggatt and Bicknell [3] proved that for a prime/? 

hP = h (mod/?) (1.1) 

where {Ln} is the Lucas sequence. Robbins [8] proved more general results for a broader class of 
integer sequences {[/„} and {Vn} which we soon define. 

In the notation of Horadam [4] write 

W„ = Wn(aMQi) (1.2) 

so that 

W„=VK-i-QW»-2, W0 = a,Wl = h,n>2. (1.3) 

Then 

ft/„ = W ; P , Q ) 
\V„ = W„(2,J>;T>,Qy 

Indeed, {£/„} and {Vn} are the fundamental and primordial sequences generated by (1.3). They 
have been studied extensively, particularly by Lucas [7]. Further information can be found, for 
example, in [1], [4], and [6]. 

All sequences generated by (1.3) can be extended to negative subscripts using either the Binet 
form [4] or the recurrence relation (1.3). In all that follows, a, h, P, and Q are assumed to be 
integers. Robbins proved the following theorem. 

Theorem 1: Let/? be prime. If A = P2 - 4Q, then 

W 1 (mod )̂> all >̂ o-5) 

CV s f f ) V 1 (mod^")> f0TP odd and/>/A, (1.6) 

Uk2^(-l)QUk2^ (mod2"), (1.7) 

where (7) is the Legendre symbol. 
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Remark 1: Robbins proved Theorem 1 under two strong assumptions. Firstly he assumed that 
(P, 0 = 1 and secondly that A > 0. The first of these assumptions was used by Lucas [7] in his 
study of the sequences (1.4) and need not be adhered to in all contexts. Indeed, Robbins' argu-
ments do not make explicit use of it and so it may be dropped. The assumption that A > 0 was 
apparently made to ensure that VA, which appears in a key proof involving Binet forms (Lemma 
2.12), is real. However, this proof remains valid for A < 0. In work on second-order recurrences 
the assumption A *= 0 is usually made so that the Binet form does not degenerate. However, in 
this context, following convention and putting (•£) = 0, the proofs of certain key results (Lemmas 
2.3 and 2.13) are greatly simplified when A = 0. This is because the Binet forms become 

{Un=nAn~l 

[Vn=2A" 

where A is an integer. Likewise, putting (f) = 0 when p\A, the proof of Robbins' Lemma 2.14, 
another key result, becomes trivial. 

With these observations, and following Robbins' arguments, Theorem 1 remains valid for all 
integers P and Q. Indeed, for/? odd and p\A, (1.6) becomes 

Ukpn=0(modpn). (1.8) 

The object of this paper is to generalize (1.5)-(1.8) to the sequence W„ = W„(a9 b; P, Q). 

2. PRELIMINARY RESULTS 

We now state some identities which are used subsequently. 

V^U^-QU^, 
2Un+l = V„+J>U„, 

-2QC/„_1 = F„-PC/W, 

w„ = W»*+(K-vw0)u„, 
K^-QW^+Wn, 

w„ = wy„+(2wl--pwQyun, 
2Wm+n = WmV„ + (2Wm+1 - PWm)U„, 

wmun+x-wm+xun = (?wm_n, 
Q"U_„=-U„, 

<*V-n=K-

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

Identity (2.1) is easily proved using Binet forms and (2.2) and (2.3) can be obtained from 
(2.1) by simple substitution using (1.3). However, we state (2.2) and (2.3) for easy reference 
subsequently. Identity (2.4) is essentially (2.14) in [4] where the initial terms of {U„} are shifted. 
Identity (2.5) is obtained from (2.4) using (1.3) and (2.6) is obtained by adding (2.4) and (2.5). 
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Identity (2.7) is obtained from (2.6) by shifting the initial terms of {Wn} to Wm,Wm+l. Finally, 
(2.8)-(2.10) are easily obtained using Binet forms. 

3. A RESULT FOR ODD PRIMES 

We now state and prove a result which generalizes (1.5) and (1.6) for odd primes p to the 
sequence {Wn}. Throughout, A is as in Theorem 1. 

Theorem 2: Let/? be an odd prime and k and m be nonnegative integers. Then 

fcw- (mod//) if (A) = 1, 
(3-1) 

KX-^- (m«W if (f) = -l. m+kpn 

Proof: Suppose (f) = 1. Then in (2.7), if we replace n by kpn and use (1.5) and (1.6), we 
obtain 

2 r
m + v - ^ V ' + ( 2 ^ i - p ^ ) V ' (mod^)- (3-2) 

Using (2.7) to substitute for the right side gives 

and since 2 has a multiplicative inverse modulo pn, the first half of Theorem 2 follows. 
If {jj = - 1 , then in (2.7) we replace n by kpn and use (1.5) and (1.6) to obtain 

2^»=^V,- ( 2^^-p^)Vi (mod^n)' (3-4> 
and rearranging terms gives 

2 ^»-^(V + p V>)- 2 r - 'V' <mod -̂ <3-5> 
Now (2.2) reduces (3.5) to 

^W^^r^V(mod^' (36) 

and making use of (2.8) completes the proof. D 
Using a similar argument, we see that if p\A then (1.8) generalizes to 

W^kpn^{{p"^\)l2)WmVkpn.l (mod/>B). (3.7) 

Remark 2: If we take the case m = 0 and {^} = {£/„}, then (2.9) shows that Theorem 2 reduces 
to (1.6). If we take the case m - 0 and {^} = {Vn}, then (2.10) shows that Theorem 2 reduces to 
(1.5). Thus, for/? odd Theorem 2 both unifies and generalizes Robbins' results. 
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4. AMESULTFORTHEPMME|i = 2 

We now prove the following theorem. 

Theorem 3: If & and rn are nonnegative integers and Wm is even, then 

\Wm+k2n„{ (mod2")ifQiseven, 
W =< n-l 

Q W
m-^ (mod2")ifQisodd. m-kl 

(4.1) 

Proof: Putting Wm - 2Qm Qm an integer, we use (2.7) to write 

Wm,n = QJn^Wm,x-^Qm)Un. (4.2) 

Now with k2n in place of n, (1.5) and (1.7) imply 

w
m+krs a ^ 2 - + (-1)Q(f^+i - p a . ) ^ 2 - ( m o d 2") • (4-3> 

If Q is even, (4.3) becomes 

W
m+kr s Q - ^ 2 - + ( ^ i - P 2 J ^ 2 » - . (mod 2") (4.4) 

and the right side of (4.4) simplifies using (4.2) to prove the theorem for Q even. 
If Q is odd, (4.3) becomes 

^ 2 » = e ^ 2 n - . - ( ^ + i - P e j ^ r - . (mod2»), (4.5) 

and rearranging terms gives 

W
m+kr *QJVvr* +*Ukr*)-WmJJkr* (mod2"). (4.6) 

Now using (2.2) and recalling that Wm = 2Qm, (4.6) becomes 

We now use (2.8) to simplify the right side of (4.7) and this completes the proof. D 

Remark 3: If we take {Wn} = {Un} and m = 0, thenf/0 = 0 is even and we see with the aid of (2.9) 
that Theorem 3 reduces to (1.7). If we take {Wn} - {F„} and m - 0, then V0 - 2 is even and we 
see with the aid of (2.10) that Theorem 3 reduces to (1.5) for the case/? = 2. 

Remark 4: Bisht [2] proved that (1.5) carries over to higher-order analogues of {Vn}. However, 
we have seen no results similar to (1.6) and (1.7) for higher-order analogues of {£/„}. 
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