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In the first section we shall consider three sequences associated with the square root function.
In the second section we shall consider three sequences associated with the cube root function. In
the third section, after considering three different sequences associated with the square root func-
tion, we make comparisons with the hope (unfulfilled) of a possible generalization.

1. THE SQUARE ROOT FUNCTION

In [1], Eric Wingler showed that repeated use of the identity

Moy = 2r+2 14"

F+2 4r +4

2

leads to an infinite product expansion of +1+r in the following manner: For g, >-1 and n a

positive integer, defining
2
a 2a, +2
= and b, ==

a
™ 4 +4 a,+2

n

implies /1+a; =112, ;.

In the sequel, n will always denote a positive integer and, a propos the preceding product, for
n>1, define ¢, = bbb, ... b,.

In Definition 1 we shall define three sequences {x,}, {¥,}, and {z,}, which will depend on a,
and which are related to {a,}, {,}, and {c,}. These definitions are motivated by our desire to
have, when q, is a positive integer, x,, y,, and z, be integers such that ¢, =x,/y,, (x,,y,) =1,
and z,, is the numerator of a,,, when it is written as a reduced fraction with positive numerator.
As can be seen from Theorem 2 and Lemma 3, these definitions will give us even more than what
we desire.

Definition 1: Define the sequences {x,}, {y,}, and {z,} as follows:
For 2|a,, define

x=a+1, y zéal +1, and z :(%)Z;
otherwise,
X, =2a,+2, y,=a,+2, and z;=a;.
For 4|a, and n > 1, define

2
_ _ 2 4 _[Zn].
xn+l—xnyn’ yn+l—yn— 9 > and Zn+l—(2 >
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SEQUENCES RELATED TO AN INFINITE PRODUCT EXPANSION

otherwise,

— _ 2 _ .2
xn+1_2xnyn’ yn+1-2yn ~Zns and Zpt1 = 2y

As an example, for a, = 6, we have that the first five terms of each of our six sequences are:

_ 9 _ _ 656 _ 43046721
q=6 a;=3 ay=3% A =550 5 = Eioesirems
b= B =32 p _1058 _ 1909058 b. = 1238989670018
1 =3 =33 03=95 4 = 1902497 5 = 7238946623297
c=1 ¢ =56 o —25%6 _ 5033504 _ 19152452518976
173 Q73 G =%y 4 = 1902497 s = 7238946623297
x,=7 %,=56 x,=2576 x,=5033504 x,=19152452518976
n=4 y,=23 y,=977 y,=1902497 ys= 7238946623297
z,=9 z,=81 z;=6561 z,=43046721 z5=1853020188851841.
_ 1853020188851841
We also have that a5 = 53757348 130900 13234258368 -

By Definition 1, for g, not an integer, the sequences {x,}, {y,}, and {z,} are defined by:

X, =2a,+2, y,=a,+2, and z, =a}

and, forn>1,

_ _ 2 .2
Xp+1 _2xnyn) Ynr1 _2yn ~Zps and Zo4l T 2y

The main results, namely, Lemmas 3-6 and Corollary 7, do not require a; to be an integer. In
fact, the only results for the square root function that do not hold when a, is not an integer are,
not surprisingly, the ones relating to x,, y,, and z, being relatively prime (Lemmas 8-10).

In Theorem 2 we shall state our results concerning the square root function. These results
relate the six sequences {a,}, {b,}, {c,}, {x,}, {,}, and {z,}.

Theorem 2: Let a; and n be integers such that #>1 and a, > —1. We have that
Ay =—5——, by =—"""", and ¢, =—
n " Zn XnYn+1 Yn

In addition, depending on whether 4|a, or not,

2
n

or b, =——"

n+l n+l

bn+l =

For g, an integer, we also have that

@ yi-z)=1, (x,,y,)=1, and 2y, y,.)=1

With Definition 1 as made, the proof of Theorem 2 is fairly straightforward and follows from
Lemmas 3-6 and 8-10.

Lemma 3: For n>1, x} —(a, +1)y? = —(a, +1)z,,.

Proof: This result is easily shown to be true for n=1. Thus, assume this result is true for
n=k, where k >1. We shall prove this result is true for 7 =% +1 in the case where 4 does not
divide a,. The proofis similar for 4|a,.
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SEQUENCES RELATED TO AN INFINITE PRODUCT EXPANSION

We have that

x/f+1 —(a+ D)y, = Qxp) - (a,+D)2y; - z,.)°
= 4x2y; —4a + 1)y +4ay + Dyiz, — (@ + Dz
= 4)’13 [xlf —(a+ 1))’13 J+4(a; + 1)y132k —(a;+ 1)213

= —4}’1% (a,+ Dz, +4a + 1))’132k —(a+ D)z} = ~(ay + Dz, U

Comment: Let a; be an integer such that @, +1 is a perfect square. Since, by Definition 1, z,, is
also a perfect square, we can let

2 2

=, +)—2— = X and p?=z .
n (1 )(a1+1)2 a1+1 pn n

Thus, by Lemma 3, y? = p? +k”.
For a; =8 and n=1, 2, 3, and 4, the identity yf = p? +k3 gives us

5% =47 437
17* =8% +15
257 =322 +255°
65537% =512% + 655357,

In this example, y, is the ™ Fermat number.

Lemma 4: For n>1and a, >—1, we have that a,,, = z, / (¥} — z,,) .

Proof: This result is easily shown to be true for n =1. Assume a,,, =z, /( Vi ~z,), where
k >1. We shall prove this result is true for n =4k +1 in the case where 4 does not divide a,. The
proof'is similar for 4|a,.
Since
(y;f R
and
0z = 2)* (4ay,, +4) = 407 =20 = 2) (@ +1)
=4y -2z + O — 2]
=40V ~ 2V
=4y; —4yez, +zp -z
=2y ~2) -z
= Vir ~ Zen
we see that
a13+1 — (ylf % )2a13+l — Zh+1
4ak+l +4 (yl? T2 )2 (4ak+1 +4) yZ+1 = g

Apyy = -0

Lemma 5: For n>1and a, >-1, we have that b,,, =x,,,v,/x,y,,,. Also, for 4|a,, we have
By = Vi | Yo Otherwise, b, =2y, / Y.
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Proof: By Lemma 4

2a,,+2 _ 2y,
bn+1 = = 2 .
Ayt 2 2yn —Zy
Thus, for 4|a,,

Dn  _ In _ XVa _ Xniln,

bn 1= - - >
* 2}/3 —Zy Vprr %Vanr XaVnn
otherwise,
2y73 zyj 2xny3 X1V n
bn+1 = 5 = = = . D
zyn =Z, Yur1 %pVunr FnVan
Lemma 6: Forn>1anda, >~-1, we havethatc, =x,/ y,.
Proof: We easily see that
¢ =b :2a1+2:£1_‘
a+2  y
Now assume, for k 21, that ¢, = x, /y,. Thus, by Lemma 5,
Cont = Crbpny = X Xk Ve _ Xen
Ve Y Vin
As a corollary to Lemmas 4, 3, and 6, we have
Corollary 7: For n>1and aq, > -1, we have that a,,,, = "l—:l— 1.
Proof: We have that
Z, (@ +Dz, (@ +1)y, —x,
an+1 = 2 = 2 = 2
yn _Zn (a1+1)(yn —zn) xn
2
Yn a, +1
=(g+)| 2| -1=——-1 0
(al )( X, ) Cj

The next lemma follows directly from Definition 1.
Lemma 8: For a, and n integers such that » > 1, exactly one of x,, y,, and z, is even. More
explicitly, we have that
when a; =0 (mod 4), z, is even,
when g, =2 (mod4), y, is even and, for n > 2, x, is even,
when g, =1 (mod 2), x, is even.
Lemma 9: For a, and n integers with n>1, each of (y,,z,), (,, V,.1), and (x,,, y,) is a power
of 2.

Proof: By Definition 1, (y,2)=1=2°. We shall complete the proof by mathematical
induction; thus, we shall also assume (y,, z,) is a power of 2, where £ >1. Also assume there is
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an odd prime p that divides (V;,q,2,;). Since p divides z,,, and z,,,|z;, we must have p|z,.
Now either

2Ypn = 2)’13 —Zp O Yy = 2)’13 ~Z-

Hence, since p is an odd prime such that p|y,,,, and p|z,, we see that p|y,. Thus, p divides
(Vx> 2). This contradicts (y,, z,) being a power of 2.

Using the fact that, for n>1, (y,, z,) is a power of 2, we shall now give indirect proofs that
(Vs Vusr) and (x,, y,) are also powers of 2.

Thus, assume p is an odd prime that divides (y,, y,.;). Now

2Vn1 = 2Y5 = =2, OF Ypuu =2¥, =2,

In either case, p|z,. Thus, pis an odd prime dividing (y,, z,); this is a contradiction.
Finally, assume p is an odd prime dividing (x,, y,). Thus, by Lemma 3, p divides

X 2
x| —2=|-Y, =—2,.
n("1+1) Yn n

Thus, p is an odd prime dividing (y,,, z,); this is a contradiction. [
Lemma 10: For a, and n integers such that n > 1, we have that
(Z a2 =1, (27, Yp) =1, and (x,, y,) = 1.
Proof: First notice that, by the preceding two lemmas,

(yn’zn) = 1: (yn’ yn+1): 1: a'nd (xn’ yn) :>1'
Thus,
s Vi =2,) = (20, 77) = 1

and, since y,,,, is an odd integer,

(2yr2nyn+l):(y:ayn+l):1- a

2. THE CUBE ROOT FUNCTION

In [1], Eric Wingler also showed that repeated use of the identity

3, 4
m:2S+331+25 +s
s+3 (2s+3)°

leads to an infinite product expansion of /1+s in the following manner: For a, >0 and » a posi-
tive integer, defining

2d> +d} 2d, +3
=———3, and ¢, = S
2d, +3)’ d, +3

dy=a, d

n+l

implies 3/1+d, =117, ¢,.

A propos the preceding product, for n> 1, let f, = ¢4 ... ¢,

7
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In Definition 11, we shall define three sequences, {u,}, {v,}, and {w,}, which will depend on
a, and which are related to {d,}, {e,}, and {f,}. These definitions are motivated by our desire to
have, when aq, is a positive integer, u,,v,, and w, be integers such that f, =u, /v, and w, can be
a numerator of d,,, when it is written as a fraction; we do not require the fractions to be written
in lowest terms. As can be seen in Theorem 12, which does not require g, to be an integer, the
definitions in Definition 11 will give us even more than we desire.

Definition 11: Define the sequences {u,}, {v,}, and {w,} as follows:
u =2a,+3, v,=a,+3, and w, =a; +2a;,
and, for n>1, define
t = 1,303 +20,), Y,y = v, G0l 4w,), and W,y = wd (203 +w,).
For g, an integer, the sequences {u,}, {v,}, and {w,} are integer sequences.

In Theorem 12, we shall state our results concerning the cube root function. These results
relate the six sequences {d,}, {e,}, {f.}, {#,},{v,}, and {w,}.

Theorem 12: Forn>1,

w u,. v u
—_n _ “n+1%n _“n
dn+l__3’ €1 = > and fn__'
un n n+l vn
We also have that
3u) +2w,
Cni1 = E
u, +w,

We shall now prove four lemmas and a corollary. These five results are analogous (also see
the comment at the beginning of Section 3) to Lemmas 3-6 and Corollary 7. The four lemmas
will provide a proof of Theorem 12.

Lemma 13: For n>1,u) —(a, +1)v. =-w,.

Proof: This lemma is true for n=1. Assuming this lemma is true for n = k, we see that
Wy — (@ + D)V}, =0 Gul +2w,)* = (a, + 1)V, Gu +w,)’
=ug (Buy +2w,.)’ = +w, )Bui +wy.)’
=, (27uy +54uiw, +36u;w; +8w})
—(up +w,)(2Tuy +2Tuiw, +Supw} +w})
=, QTugw, + 27wk +Tw}) —w, (27u] +27uw, + 9w} +w})

33 4
= 2U W =W =Wy O

Lemma 14: Forn>1and a,>-3/2,d,,, =w,/u,.

Proof: This result is easily seen to be true for » = 1. Thus, assume that, for £ >1, d,
w, /u;. Since

+1 =
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3 ,,3
Wi 2U +W, Wiy

9

3 4 3
2dyy + Ay =diy (@ +2) = » % »
k k k

and

3 +2w, B u, (3 +2w),) Uy

3

2d;,,+3= 7
u; u, u,

we have that
3 4 12
2ty Wi W Wiy

k+2 — 37 12 3 7.3 a
(2d;4, +3) Uy Upn Uy
Lemma 15: For n>1 and a; >-3/2,
3
3u, +2w, e, = UV,
3 n+ .
3u, +w, UV,
Proof: Let n>1. By Lemma 14,
2d,,,+3 3uj+2w, u, 3u,, +2w,
€nr1 = = 3 5.3 ) :
d,.+3 u, 3u, +w, 3u,+w,

By Definition 11, this implies that

3
_ unvn (3un +2wn) _ urH-lvn
€re1 =

Uyvy (3un3 +wn) Uy Vnt1 .
Lemma 16: Forn>1and a,>-3/2, f,=u,/v,.
Proof: Since u; =2d, +3 and v; =d,; +3,

2d\+3 _ 2043 _uy
d+3 a+3 v

fl =e =
Now assume that, for k£ >1, f, =u, /v,. Thus,

u, u,,.v, U
_ _Wy WV U
JSimn=fiem=—"—" ="
Vi WVerr Vien

Corollary 17: For n>1 and a, >—-3/2, we have that

a,;+1
dn+1 = }3
Proof: We have, by Lemmas 14, 13, and 16,

-1

w ((1 + 1)V3 - u3 \% ’ a, +1
_'n _ 1 n n __ n _A
dn+1 __’::_ _—__3_____ (al + 1)(___) — 1 f'n3 — 1 0

n n
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3. COMPARING THE SEQUENCES ASSOCIATED WITH THE
SQUARE ROOT AND CUBE ROOT FUNCTIONS

Comparing Definition 1 with @, not being an even integer and Definition 11, we have, for
nx1

b

— _ 2 _ .2
Xpp1 = 2xnyn’ Yne1 = 2yn ~Zys and Zyel = Zn>
but

3 3 3/m.3
U, =u,Gu, +2w,), v,., =v,Bu, +w,), and w,, =w,(2u, +w,).

This does not lead to any obvious generalization.
Recall that one of the reasons for our choice of the sequences {x,},{y,}, and {z,} was to
have (x,,y,)=1 When choosing the sequences {u,},{v,}, and {w,}, to make our task less

difficult, we did not require that (u,,v,)=1. If, for the square root function, we relax the rela-

tively prime requirement, we can define three sequences that are associated with the square root
function (compare Lemmas 3-6 with Lemmas 19-22) and which show more similarities with the
three sequences we defined for the cube root function. We shall now define these three different
sequences for the square root case.

Definition 18: Define the sequences {g,}, {h,}, and {j,} as follows:
g =2a,+2, h=a,+2, and j, =a}(a, +1),
and define, forn>1,
8ot = £2(285 +2J,) =28,(81 + J), Moy =P (2854 J,)s S = I (82 + J)-
We shall now verify four lemmas similar to Lemmas 3-6.

Lemma 19: Fornz1, gf, —(q, +1)h3 =—j

Proof: This result is easily shown to be true for » = 1. Thus, assume this result is true for
n=k, where k >1. We shall prove this result is true for n =% +1. We have that
Gon—(ay+ DAL, =4gh (gl + ju)* —(a+ DA g - i)’
=4gilg — (@ + D 1+4g, j, +480 8¢ — (@ + DR
+4g; i —(ay +Dhji
=—4gy i, +48LJk —48iJk +AgLJk — Ji (@ + D
=—Ji (& +Jx) = —Jrs- O

Lemma 20: For n>1and a, > -1, we have that a,,, = j / g>.
Proof: This result is easily shown to be true for n = 1. Assume a,,, = j, / gi, where k >1.
Now 7
2 . . . . .
Go  _Je & _ Je  _ Je(Gti) _Jen
4 +4 g Mg+ A8t 488+ Sim

Qv = g
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Lemma 21: For n>1 and a, > -1, we have that

22 +), ™ gh

2g3 +2jn _ b gn+1hn

n+1

Proof: By Lemma 20,

b _ 2an«l—l +2 _ 2(g3 +jn) gﬁ — 2(g3 +jn) — 2gn(gf +jn)hn — gn+1hn

n+l — - . . j
Toa,,+2 g 28 +j, 28 +j, &h(Qg +i,) 8&h

n+1

O

Lemma 22: For n>1 and a, > -1, we havethatc, =g, /h,.

Proof: This result is easily shown to be true for » = 1. Assume ¢, =g, /h,. Thus, by
Lemma 21,
8 &l _ &iu
Co1 = by =75 = -0
" ' b &l M

Comparing Definitions 18 and 11 and Lemmas 19-22 with Lemmas 13-16, we see a very
close connection between the square root function and the cube root function:

o g, =2a,+2, h=a,+2, j, =ai(a +1), and
u =2a,+3, v,=a,+3, w =a(a +2)
and, for n>1 and a, > -1,

© 801=8,282+2),), My =h,(282 +Jjn), Juir = Ja (& + Jn), and

3 3 3
un+] = un(3u3 +2wn)7 vn+l = vn(3un +Wn), Wn+1 = wn (2”n +W”),

o g2 —(a,+Dh*=—j, and u)—(a,+1)V, =-w,,

_ _ W
® Ay =5 and dn+l -3
n u,
2 . 3
2gn + 2]n gn+1hn 3un +2M)n un-an
o 2 —f=bh = h and 3 =€ =
2gn +jn gn n+l 3un +wn unvn+1

g u,
o7 and f =2
e P and f, ”

n n

Sometimes the correct generalization, if any, and the obvious generalization, if any, are not
quite exactly the same.
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