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In the first section we shall consider three sequences associated with the square root function. 
In the second section we shall consider three sequences associated with the cube root function. In 
the third section, after considering three different sequences associated with the square root func-
tion, we make comparisons with the hope (unfulfilled) of a possible generalization. 

1. THE SQUARE ROOT FUNCTION 

In [1], Eric Wingler showed that repeated use of the identity 

R 2r + 2 I r2 

Vl + r = 1 + 
r + 2 V 4r + 4 

leads to an infinite product expansion of Vl + r in the following manner: For ax > -1 and n a 
positive integer, defining 

a\ 2an+2 an+l = -— and bn = —-
4an+4 a„+2 

implies ^\ + ax = II,* i fy • 
In the sequel, n will always denote a positive integer and, apropos the preceding product, for 

n> 1, define cn - bxb2b3 ...bn. 
In Definition 1 we shall define three sequences {x„}, {yn}, and {zn}, which will depend on ax 

and which are related to {a„}, {&„}, and {cn}. These definitions are motivated by our desire to 
have, when ax is a positive integer, xn,yn, and zn be integers such that cn-xnlyn, (xn,yn) = \, 
and zn is the numerator of an+l when it is written as a reduced fraction with positive numerator. 
As can be seen from Theorem 2 and Lemma 3, these definitions will give us even more than what 
we desire. 

Definition 1: Define the sequences {x„}, {>>„}, and {zn} as follows: 
For 2|a1? define 

*i=ai + l, Ji = 2 a i + 1' a n d Zl"(f~ 
otherwise, 

x{ = 2ax +2, yt-ax+ 2, and zx = a\. 

For 4\ax and n>l, define 
2 Z„ , [ Z„ 

xn+\ - x
nyn> yn+\ -yn ~ ' a Zn+i ~ i 9 
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otherwise, 
Xn+1 = 2xnyn> yn+l = 2yl ~Zm a n d Zn+l = Zn • 

As an example, for ^ = 6, we have that the first five terms of each of our six sequences are: 

a _ 6 a = 9 _ a __8J_ a = 6561 „ = 43046721 
wl u u 2 7 u 3 448 u 4 947968 "5 3619451788288 
/) -2 h =22- h - 1Q58 /> - 1909058 /, _ 7238989670018 
^1 4 ^ 2 23 U 3 977 ^4 1902497 ^5 7238946623297 
r = 1 r = i £ /" =2576 r 5033504 ^ 19152452518976 
Cl 4 C2 23 C3 977 C4 1902497 C5 7238946623297 

J C 1 = 7 x2=56 x3=2576 x4 = 5033504 x5 = 19152452518976 
yx = 4 ^2 = 23 j 3 = 977 >>4 = 1902497 y5 = 7238946623297 
Z l = 9 z2=81 z3 = 6561 z4 = 43046721 z5 = 1853020188851841. 

W P flkn h a v p t h a t /7 - 1853020188851841 
VVC dlbV HdVC Ulctl W6 - 52402348213090018234298368 ' 

By Definition 1, for ax not an integer, the sequences {xn}, {y„}, and {zn} are defined by: 

xx - 2ax +2, yl=a1+ 2, and z2 = a\ 
and, for w > 1, 

*„+l = 2xny*> yn+l = 2yl ~Zn> * n d Z„+{ = Z„2. 

The main results, namely, Lemmas 3-6 and Corollary 7, do not require ax to be an integer. In 
fact, the only results for the square root function that do not hold when ax is not an integer are, 
not surprisingly, the ones relating to xn, yn, and zn being relatively prime (Lemmas 8-10). 

In Theorem 2 we shall state our results concerning the square root function. These results 
relate the six sequences {an}, {£„}, {c„}, {xn}, {yn}, and {zn}. 

Theorem 2: Let ax and n be integers such that n > 1 and ax>-\. We have that 

«„+1 = I £ L - , K+l =5*^, and c=^. 
y„-z„ xny„+l y„ 

In addition, depending on whether A\ax or not, 
2 2 

h - y* or h - ^n 

yn+\ y?i+i 

For ax an integer, we also have that 

(zn?yl-zn) = l> (x„9y„) = l, and (2y2
n,yn+l) = l. 

With Definition 1 as made, the proof of Theorem 2 is fairly straightforward and follows from 
Lemmas 3-6 and 8-10. 

Lemma 3: For n>\, x\- (ax + l)y% = -{ax + l)zn. 

Proof: This result is easily shown to be true for n = 1. Thus, assume this result is true for 
n- k, where k > 1. We shall prove this result is true for n = k +1 in the case where 4 does not 
divide ax. The proof is similar for A\ax. 
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We have that 

**+i - («i + l)A2
+i = (2xkykf- (a, + \)(2y2

k - zk)2 

= 4xlyl - M<h+i)yt+4(«i+l)ylh - («i+1)4 
= *y\lA - (ai+1)^]+Msh+l)ylh - i<h+1)4 
= -4y2M+iK + 4(«i+l)ylzk - to+1)4 = -(«i+i)**+i- D 

Comment: Let ĉ  be an integer such that al+\ is a perfect square. Since, by Definition 1, zn is 
also a perfect square, we can let 

* M « i + l ) 7 - ^ = T ^ and / ^ V (<*! +1) ax +1 

Thus, by Lemma 3, y\ - pi + k2. 
For ax = 8 and w = 1, 2, 3, and 4, the identity j„ = pn + &„ gives us 

5 2 =4 2 +3 2 

172=82+152 

2572=322+2552 

655372-5122+655352. 
In this example, yn is the nih Fermat number. 

Lemma 4: For n > 1 and ^ > - 1 , we have that an+l - zn I{yl -zn). 

Proof: This result is easily shown to be true for n = 1. Assume ak+l ~zk!{y\~zk), where 
k > 1. We shall prove this result is true for « = & +1 in the case where 4 does not divide ax. The 
proof is similar for 4\ax. 

Since 
(yl-zk)2al+\=zl=zk+i 

and 
(y2

k -zkf (4ak+l + 4) = 4(y2
k - zk)<j/2 -zk)(ak+l +1) 

= 4(y2k-zk)[zk+(yl-zk)] 
= %yk-zk)yk 

= 4yt-4y2
kzk+4' 

= {2yl-zkf-z2
k 

= yk+l ~~ Zk+l 

iy2 ~ zk)2 aM _ 

2 

Zk+\ 

we see that 
2 

a =
 a ^ + i = — - — = — D 

"+2 4a ,+ 1 +4 (yl-Zk)\4ak+l+4) y2
k+l~zk+x 

Lemma 5: For n > 1 and at > - 1 , we have that bn+x = xn+lyn I xnyn+x. Also, for 4^?,, we have 
K+i = yl !y^ otherwise, bn+l = 2j;2 /j/„+1. 
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Proof: By Lemma 4 

ZL.I = 
««+1 + 2 2y2

n-zn 
Thus, for A\al, 

_2a„ + 1 +2_ 2j„2 

otherwise, 

b = fo* = ^ = ^ n =
 xn+\yn. 

2jw
2-z„ j w + 1 xnyn+l xnyn+1

9 

h _ 2yl _ 2yl _ 2xnyl _ xn+lyn 

^yn ~~zn yn+\ x«>Wi xnyn+\ 

Lemma 6: For n > 1 and al>-\9 we have that cn - xn Iyn. 

Proof: We easily see that 
2a, + 2 JCi 

cx = bx = — i = — . 
a 1 + 2 j / , 

Now assume, for k > 1, that ĉ  = x̂  / ^ . Thus, by Lemma 5, 

T Xk Xk+^k Xk+] 

yk
 x

kyk+i yk+i 

As a corollary to Lemmas 4, 3, and 6, we have 

ollary 7: For « > 1 anc 

Proof: We have that 

Corollary 7: For « > 1 and ax > - 1 , we have that aw+1 = ^~--1. 

^2 

2 

'̂ + 1)[t - 1 = ^ - 1 . D 

The next lemma follows directly from Definition 1. 

Lemma 8: For ax and n integers such that n> 1, exactly one of xnry„, mdzn is even. More 
explicitly, we have that 

when ax = 0 (mod 4), zn is even, 
when ax == 2 (mod 4), J>J is even and, for w > 2, xw is even, 
when ax = 1 (mod 2), x„ is even. 

Lemma 9: For a2 and n integers with n > 1, each of (yn, zw), (yn, J„+1), and (x„, j ^ ) is a power 
of2. 

Proof: By Definition 1, 0^ ,^) = 1 = 2°. We shall complete the proof by mathematical 
induction; thus, we shall also assume (yk,zk) is a power of 2, where k > 1. Also assume there is 
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an odd prime/? that divides (>Vhi>z£+i)- Since/? divides zk+l and zk+l\zl, we must have p\zk. 
Now either 

2 ^ + i = 2 ^ - ^ oryk+l=2yl-zk. 

Hence, since/? is an odd prime such that p\yk+l, and p\zk, we see that p\yk. Thus, p divides 
(yk,zk). This contradicts (yk, zk) being a power of 2. 

Using the fact that, for n > 1, (yny zn) is a power of 2, we shall now give indirect proofs that 
<X>>Wi) a n d (xn9yn) are also powers of 2. 

Thus, assume/? is an odd prime that divides (yn, yn+l). Now 
2y»+i - 2yl = -zn or y„+l - 2y2

n = -zn. 

In either case, p\zn. Thus, p is an odd prime dividing (j/w, zn); this is a contradiction. 
Finally, assume/? is an odd prime dividing (xn,yn). Thus, by Lemma 3, p divides 

/ ' \ 
\ Xn \ 2 

*,, —77 - ; v w = - V 

Thus, p is an odd prime dividing (yny zn); this is a contradiction. • 

Lemma 10: For ax and ft integers such that n > 1, we have that 

O ^ ^ - O ^ (2^,^„+i) = l,and(xw,^w) = l. 

Proof: First notice that, by the preceding two lemmas, 

(yn> zn) = \ (y», J>w+i) = 1, and (x„ ,yn) = l. 

Thus, 

and, since yn+l is an odd integer, 

2. THE CUBE ROOT FUNCTION 

In [1], Eric Wingler also showed that repeated use of the identity 

,r 2s + 3 r 2s3 + s4 

Vl+S= 3 1-f -
s + 3 \ (2s + 3)3 

leads to an infinite product expansion of^Jl + s in the following manner: For a} > 0 and // a posi-
tive integer, defining 

, 2dl+d* A 2dn+3 
d,=au d„+]=— ^r, and e„ =•—- , 

1 *' "+l (2*/„+3)3' " c / n + 3 ' 
implies ljl+dx - Y[*L\ ei • 

A propos the preceding product, for // > 1, let fn = exe2e?i... en. 
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In Definition 11, we shall define three sequences, {un}, {vn}, and {wn}, which will depend on 
ax and which are related to {dn}, {en}, and {/„}. These definitions are motivated by our desire to 
have, when ax is a positive integer, un, vn, and wn be integers such that fn -unlvn and wn can be 
a numerator of dn+l when it is written as a fraction; we do not require the fractions to be written 
in lowest terms. As can be seen in Theorem 12, which does not require ax to be an integer, the 
definitions in Definition 11 will give us even more than we desire. 

Definition 11: Define the sequences {ww}, {vw}, and {wn} as follows: 

ux = 2a{ + 3, vl=al+ 3, and wx - a\ + 2a 3 , 

and, for n > 1, define 

For ax an integer, the sequences {un}, {vw}, and {wn} are integer sequences. 

In Theorem 12, we shall state our results concerning the cube root function. These results 
relate the six sequences {dn}, {ej, {/„}, {un}, { v j , and {wn}. 

Theorem 12: F o r # > l , 

d -?*. e - u»+iv» a t l d f -On. 
an+l - 3 •> en+l ~ J d n u Jn ~ 

un unvn+l vn 
We also have that 

_3u3„+2w„ 
en+\ ~ - 3 

We shall now prove four lemmas and a corollary. These five results are analogous (also see 
the comment at the beginning of Section 3) to Lemmas 3-6 and Corollary 7. The four lemmas 
will provide a proof of Theorem 12. 

Lemma 13: For n > 1, #3 - (aj +1)v3 - -wn. 

Proof: This lemma is true for n = 1. Assuming this lemma is true for n = A, we see that 

"*+i ~ ("i + !K3
+1 = %3(3%3 +2u^)3 - {ax + l)v3(3z/3 + ^ ) 3 

= ulQul +2wk)3 - ( ^ +wk)(3u3
k +wk)3 

= u3
k(27ul+54u%wk +36u3

kwl +$w3
k) 

-<& +^)(27%9 +21utwh+9ulwl + w\) 
= ul(27u'wk +21u3

kw2
k +lw3

k)-wk(21u9
k + 27u6

kwk + 9u3
kw2

k +w3
k) 

Lemma 14: For « > 1 and ax > - 3 / 2 , t/n+1 = ww /w3. 

Proof: This result is easily seen to be true for n = 1. Thus, assume that, for k > 1, <4+1 = 
wklu3

k. Since 

46 [FEB. 



SEQUENCES RELATED TO AN INFINITE PRODUCT EXPANSION 

and 

we have that 

2d3 +dA -d3 (d iZ)-™* 2uk+wk-wk+i 
ZClk+l + ak+l ~ ak+l \ak+l + A) - 9 3 - 12 

Uk Uk Uk 

9/7 , o _ 3 ^ +2wk _ uk(3u3
k +2wk) __ uk+l 

Zak+l + J - 3 - 4 ~ 4~~: 

uk uk uk 

d =
 2 < ^ + l + < # + ! =

 wk+l uk2
 = Wfc+l 

*+2 (2rf,+1 + 3)3 ii£2 i£+1 n2+1" 

Lemma 15: For » > 1 and a1>-3/ 2, 

3u3„+2wn _ _ un+lv„ 
~> 3 w+1 
3 t t * + W n UnVn+l 

Proof: Let w > 1. By Lemma 14, 

• 

_ 2<i„+1 +3 _ 3ul+2wn u3
n _ 3ul+2wn 

dn+l+3 ii* 3ii^+wn 3^+w„ 

By Definition 11, this implies that 

_ unvn(3u3
n +2wn) _un+lvn 

Lemma 16: For rc > 1 and ax>-3/2, fn = un/vn. 

Proof: Since % = 2 ^ + 3 and vx = dx + 3, 

_2rf1+3 _2a x +3 _wL 
1 _ ^ + 3 ~ ax+3 " vt 

Now assume that, for k> I, fk=uk/vk. Thus, 

Jk+\- Jkek+l~ - • U 

Corollary 17: For ?2 > 1 and ax>-3l 2, we have that 

Proof: We have, by Lemmas 14, 13, and 16, 

\ 3 

! 3 ^ = (a 1 + iK-n, = ( a i + 1 JO _ 1 = 5L+1_!. 
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3. COMPARING THE SEQUENCES ASSOCIATED WITH THE 
SQUARE ROOT AND CUBE ROOT FUNCTIONS 

Comparing Definition 1 with ax not being an even integer and Definition 11, we have, for 
w>l, 

*„+i = 2x,y^ yn+i = 2yl - *„, and zn+l = z„2, 
but 

Un+l = ^nOUn+2wnl Vn+l=VnOul+™nl ^ d W„+l = W* ( 2 ^ 3 + W» ) . 

This does not lead to any obvious generalization. 
Recall that one of the reasons for our choice of the sequences {xw}, {yn}, and {zn} was to 

have (xn,yn) = l. When choosing the sequences {un},{vn}, and {wn}, to make our task less 
difficult, we did not require that {un,vn)-\. If, for the square root function, we relax the rela-
tively prime requirement, we can define three sequences that are associated with the square root 
function (compare Lemmas 3-6 with Lemmas 19-22) and which show more similarities with the 
three sequences we defined for the cube root function. We shall now define these three different 
sequences for the square root case. 

Definition 18: Define the sequences {gn}, {/*„}, and {jn} as follows: 

ft = 2 ^ + 2 , ^ = a j + 2 , a n d y ^ a j ^ + l ) , 

and define, for n> 1, 

gn+l=gn(2g2+2Jn) = 2gn(gn+Jnl hn+l = K(2gn + fn)> Jn+l = Jn (gn + Jn) • 

We shall now verify four lemmas similar to Lemmas 3-6. 

Lemma 19: For n > 1, g2
n - (ax + \)h2

n = -jn. 

Proof: This result is easily shown to be true for n = 1. Thus, assume this result is true for 
n- k, where k > 1. We shall prove this result is true for n - k +1. We have that 

g2
+1 - (a, + l)h2

+1 = 4g2
k(g2

k +jk)2 - (a, + \)h2
k(2g2

k -jkf 
= 4gt[g2k~(a1 + l)h2

k] + 4g4
kjk + 4g2

kjk[g2
k-{ax + \)h2

k] 
+ 4g2

kj2
k-(al+\)h2

kj2
k 

= -4gtJk +4g4kJk-4g2J2k +4g2Jk -Jk(ai + Wl 
= -Jk(g2k+Jk) = -Jk+i- • 

Lemma 20: For n > 1 and ax > - 1 , we have that an+l = jnl g2. 

Proof: This result is easily shown to be true for n = 1. Assume ak+1 - j k I g2, where k > 1. 
Now 

1 1 1 1 1 1 

a _ ak+l __ Jk gk _ Jk _ Jk(gk+Jk) _ Jk+l 
k+2 4a , + 1 + 4 gtKgl^Jk) 4gl(g2k+Jk) *g2M+Jk)2 gli' 
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Lemma 21: For n > 1 and ax > - 1 , we have that 

2gn+2Jn_h _ gn+A 
2 . • ~ un+l 2gn+Jn gnK +1 

Proof: By Lemma 20, 

_2an+x+2 _2(gl
n+jn) gl

n _ 2{gl
n +jn) _ 2gn{gl

n +jn)hn _ gn+xhn 
£» - . - - . 

Jl 

a„+l+2 gl Zgt+Jn 2gl+Jn grA(2gl + Jn) gnK, 
w+1 ~~ _. . o ~~ 2 ' ~ 2 . • — ~ 2 " ! ~ i 7Z 2~~ T T ~~ "i * LJ 

+1 

Lemma 22: For n > 1 and ax > - 1 , we have that cn= gnlhn. 

Proof: This result is easily shown to be true for n = 1. Assume ck-gklhk. Thus, by 
Lemma 21, 

_ n h - gk gfc+A _ g"fc+i m 

K gA+i hk+i 

Comparing Definitions 18 and 11 and Lemmas 19-22 with Lemmas 13-16, we see a very 
close connection between the square root function and the cube root function: 

• gx - 2ax +2 , hx - ax + 2, jx - a\ (ax +1), and 

ux=2ax+3, vl=al+3, wl=ax(al+2) 

and, for n > 1 and ax > - 1 , 

• gn+l =gn(2g2n +2Jn\ hn+l = K(2gl + Jnl Jn+l = Jnign + Jnl and 
Wa+1 = "* (3^3 + 2 Wn I Vn+l = V„ 0Ul + W , X W«+l = Wl (2lll + W , X 

• gl ~ Oi + 0 ^ 2 = -7„ and ul -(ax + \ )v3
n = - ww, 

/ w 
• a„+ 1 = -f- and </B+1 = -f-

gn Un 

2g„+A gA+i 

. cn=^ and / „ = ^ . 

> 

and 3»„3+2w„ 
3w„3+wn 

_ e n + l 
UnVn+l 

Sometimes the correct generalization, if any, and the obvious generalization, if any, are not 
quite exactly the same. 
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