ON THE (3, F) GENERALIZATIONS OF THE FIBONACCI SEQUENCE

W. R. Spickerman, R. L. Creech, and R. N. Joyner

East Carolina University, Greenville, NC 27858
(Submitted May 1993)

Recently the (2, F) generalized Fibonacci sequences were derived (see [1], [4], [5], [6]). The
purpose of this paper is to derive formulas for all (3, F) generalized Fibonacci sequences as
functions of the terms of seven sixth-order recursive sequences.

Let S={a,b,c} and S, be the group of permutations on §. Let i be the identity; and
a=(ab), f=(ac), y =(bc)bethe two cycles; and § =(a b c), € =(a c b) be the three cycles.
Finally, let ¢ and = be arbitrary permutations of S, and 1; = {a;, b,,¢;}. Atanassov [2] considered
the 36 possible systems of three second-order difference equations:

Wy =9+, n=0, e))

with initial conditions ¥ = {ay, by, ¢y} and ¥} = {a;, b;, ¢}, where ay, by, ¢y, a;, b;, and ¢, are real
numbers. Since the permutation in the left member of (1) is always the identity (z), these systems
can be represented by the ordered pair (¢, 7), where ¢ and v are the permutations of the right
member. Spickerman et al. [7] proved that the 36 systems are members of the eleven equivalence
classes. The solutions of one of these classes is three generalized Fibonacci sequences. The solu-
tions to three other classes consist of one generalized Fibonacci sequence and one (2, /) general-
ized Fibonacci sequence. The solutions to the other seven systems are the (3, /) generalized
Fibonacci sequences. Atanassov [3] denoted each of these seven sequences by a number, as
shown in Table 1. A notation in terms of ordered pairs of permutations of S, is also given.
Considering each equivalence class, it follows that when the solution to one system in a class
is known, the solutions to the other systems are permutations of the known solution. Atanassov
et al. [3] proved
i, =9 +7r), s€{1,2,3,4,56,7}, )

with initial conditions
Y ={ag, b5, i}, 1 ={af, b, cf};
can be replaced with seven sixth-order difference systems:
6 6 6
Z kiansi =0, Zkis t6-i = 0, Z kicasi =0, n=0, 3)
i=0 i=0 i=0
with initial conditions {a’};, {8’}:, {¢’}; , respectively. The values for k; for 1<s<7 are given
in Table 2.

Let p*(x)= X5,k x and let {P/}7-0 be the recursive numbers (of order six) determined by
1/ p*(x). Then the seven recursion relations and first terms of the sequences are given in Table 3.
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TABLE 1
Permutation Equivalence Atanassov's
Notation Class Number
[(z, )] {(1,0)} none*
[(a,a)] {(@, @), (B, B, (r.7)} none *
G a)] {@a), (1, B), (1)} nonex*
[(e, D] {(a, 0, (8,0, (¥, D} none
[2,6] {(£,6), (1, &)} 1
[4,1] {(6,0, (¢, 0} 2
[6. 6] {(3,6), (¢, &)} 3
[0, €] {6, &), (¢,6)} 4
la, Bl {(@,B), (@, 7). (B, a),(B.y), (v, ). (¥, B)} 5
[a’ 5] {(a’ 5)3 (a9 6‘)7 (ﬂ’ 5)’ (ﬂ’ 6‘)’ (}” 6)’ (7’ 6‘)} 6
[6, a] {(8, ), (5, 2), (5, B), (£, B, (8,7), (&, 1)} 7

*Solution is three generalized Fibonacci sequences.

**Solution is one generalized Fibonacci sequence and one (2, F) generalized Fibonacci

sequence.
TABLE 2
S
Values of k;
i
s{|0 1 2 3 4 5 6
11 -3 3 -1 0 0 -1
2{1 0 -3 -1 3 0 -1
311 0 0 -1 -3 -3 -1
411 0 0 -4 0 0 -1
511 -1 =2 2 -1 0 1
6(1 -1 -1 0 1 -1 -1
7({1 0 -1 -2 =2 1 1
TABLE 3
s Recursive Relation First 7 Terms
1{P,=3P,s—3P,,+P,+P, 1,3,6,10,15,21,29
2| Fu=3F,+hF,-3F,+F, 10,3,1,6,6,11
3|\P,s=P,3+3P,,+3P, +P, 1,0,0,1,3,3,2
4 Pn+6 = 4Pn+3 + P;: l» 0’ Oa 49 07 07 17
5|P.s=Fh.s+2F, ,-2F 3 +F,,~-F1113389,21
6 Pn+6=Pn+5+Pn+4-Rz+2+Ex+l+Pn 13172’3>4’7’11
7| Pg=Pus+2Ps+2Py Py~ B | 1,0,1,2,3,3,8

Let f°(x), g°(x), and A°(x) be the three solutions to the seven systems, and let

fi(x)= z()ajxi, g'(x)= Zb}xi, h*(x) = chxf.
= 7=0 =0

First, it follows that
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&L 6 ; |n=Jj forj<s
kisxl s x) = kis i J | — k,s s_, >
(E) )/ ) (E, ¥ )(Za * ] 2[, = K :| {nz 6 otherwise,

“E[gen g |

In view of the difference systems (3), the last term is zero. Therefore,

(st ’)f ()= Z{Zkf j_,] .,

i=0 =0} i=0

or
51
P ) = z[z k]
j=0Li=0
Let
Ll
i = zo;k;:l aj_ma
then
5 .
reo- B (S|
P (x) pary p (%)
Consequently,

Fox) = [Z qfx")(i P;xf],
i=0 j=0

where P/ are from the sequences in Table 2. Expanding and collecting terms gives

9= Z{qui)s} ; {mzj when j <5,

1Zoli=0 m=5 otherwise,

=§(iq31’ﬂ]x’ DNNT AL

J=0i=0

for the generating function for {a};. The terms of the sequence are given by '

; -
a; = §Q;Pjs—i = Z [Z k;:ars m Pjs—r forj <5,

i=0 Lm=0

and

5 5[ 7
=Y qP, = Z[Zkrf,af m| Pl forj>5s
i=0 i=0| m=0 _

The values of a,2 <i <5, are computed in terms of ag, a;, b;, b}, ¢;, ¢/ by use of equations (2).
The sequences {b}; and {c;}; have the same form.
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EXEXE XS

GENERALIZED PASCAL TRIANGLES AND PYRAMIDS:
THEIR FRACTALS, GRAPHS, AND APPLICATIONS

by Dr. Boris A. Bondarenko
Associate member of the Academy of Sciences of the Republic of Uzbekistan, Tashkent

Translated by Professor Richard C. Bollinger
Penn State at Erie, The Behrend College

This monograph was first published in Russia in 1990 and consists of seven chapters, a list of 406 references,
an appendix with another 126 references, many illustrations and specific examples. Fundamental results in the
book are formulated as theorems and algorithms or as equations and formulas. For more details on the contents
of the book, see The Fibonacci Quarterly 31.1 (1993):52.

The translation of the book is being reproduced and sold with the permission of the author, the translator,
and the "FAN" Edition of the Academy of Science of the Republic of Uzbekistan. The book, which contains
approximately 250 pages, is a paperback with a plastic spiral binding. The price of the book is $31.00 plus
postage and handling where postage and handling will be $6.00 if mailed anywhere in the United States or
Canada, $9.00 by surface mail or $16,00 by airmail elsewhere. A copy of the book can be purchased by
sending a check make out to THE FIBONACCI ASSOCIATION for the appropriate amount along with a
letter requesting a copy of the book to: MR. RICHARD S. VINE, SUBSCRIPTION MANAGER, THE
FIBONACCI ASSOCIATION, SANTA CLARA UNIVERSITY, SANTA CLARA, CA 95053.
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