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1. INTRODUCTION 

Let Sap(n) = a + a22p +a33p + ---+annp, with TIGN.PGN, and a GR (a *0,a^ 1), 
where TV and R are, respectively, the sets of positive integers and real numbers. 

In [2] N. Gauthier used a calculus-based method to evaluate Sap{n). He wrote Sa^p{n) as 
an times a polynomial of degree p in n plus a term which is ^-independent. The coefficients are 
then determined recursively. 

In this paper methods similar to those used in [1] are employed to derive various formulas for 
Sap{n). Recurrence formulas in terms of powers of n and of n + l are given. Explicit ex-
pressions for Sa (ri) in determinant form in terms of n and of n + l are then derived from these 
formulas. These determinants are finally used to write Sa p(ri) in terms of polynomials of degree 
p in n and in n +1. 

2. FORMULAS IN" TERMS OF POWERS O F « + l 

2.1 A Recurrence Formula 
Let TIGN . For k GNand a GR (a ^ 0, a ^ 1), let 

n 
k 

and take 

Then 

SaAn) = a + a22k +a3lk + '" +annk = Z a V 

5fl 0(/?) = l + a + a2 + ---+aw = 

r=0 

an+l-l 
a-\ 

a"+l(n + l)k = Sa,k(n + l)-Sa,k(n) 

^ a ^ i r + lf-S^in) 

r=ov /=(A J J 

= aHf )Sa,i(n)-SaAn)- (2.1.1) 

The equation 
a(S +1)* - S* = an+\n +1)*, (2.1.2) 
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in which the binomial power on the left-hand side is expanded and S1 (i = 0,1,2,..., k) are then 
replaced by Sa9i(n), provides a mnemonic for (2.1.1). 

For example, for k = 1, formula (2.1.2) gives 

a(S + l)-S = an+l(n + l), 
and so 

(a-l)S.M+4 
V a~l J 

= an+\n + \). 

Hence, 
a 

n+l 

« » ) = — T ( " + 1)- , n 2 a - l (a -1) 
a (a"+1-l). 

Also, by (2.1.2), with * = 2, 

a"+1(n +1)2 = a(S +1)2 - S2 = a{S2 + IS +1) - S2, 

which implies that 

(a-l)Sa,2(n) + 2aSaA(n) + a\ q"+1-l^ 
a - l a"+1(" + l r 

Thus, by (2.1.3), 
aM+1 , „, 2aM+2 a"+1-l. 

5 - ( " ) = ^ ( " + 1)-(^(" + 1) + ( ^ ( a + a ) 

(2.1.3) 

2.2 5fl(p(«) as a Determinant 
Let p&N and let k = l,2,...,p in (2.1.1). It follows, applying Cramer's rule to these/? 

equations together with the equation Sa0(ri) = a"a_~l, that 

sa,M = 
in+P 

(« - ! ) ' 

0 0 0 - 0 0 a - " ( ^ i ) 
£=L 0 0 ••• 0 0 « + l 
(?) ^ 0 - 0 0 (» + l)2 

(#) ¥ c^+ir1 

U ) (A) ("+1)p 

(2.2.1) 

-*W+P 

(a-l) ' 

0 
a - l JL 

1! a 
J_ J_ 
2! 1! 

0 
0 

a-l 
a 

1 
(p-1)! (p-2)\ (p-3)! 

_L i l 
p\ * (p-1)! (p-2)\ 

1 1 

0 
0 
0 

0 0 *-(*£=!) 
0 0 *±I 
0 0 ("+lr 

1! a 
(w+1)' ,p-l 

J_ 
2! 

fl (p-1)! 
1 ("+*)P 

1! p! 

(2.2.2) 
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2.3 Sap(n) in Terms of a Polynomial 

By expanding the determinant (2.2.2) with respect to the last column, 
P-I 

Sa.P(") = I *r(P + dP~r + apa-^(a"+1 -1), 
r=0 

w i t h ^o = i=T a n d , for r = 1,2,..., /?, 

ar r)a-l{a-l)r V J 

i 
1! 
1 

2! 

1 
(r-1)! 

1 
r! 

a-l 
a 
1 
1! 

1 
( r -2) ! 

1 
(r-1)! 

0 
a-l 

a 

0 • 
o . 

.. o 
•• 0 

1 
1! 
1 

2! 

0 
0 

a-l 
a 
I 
1! 

Now, let f0(a) = 1 and, for r = 1,2,3,..., 

(2.3.1) 

fr(P) = a 
(a-l) ' 

-H(-iy 

± *=* 0 0 
1! a 
_L J_ a=l o 
2! 1! a U 

( r _ l ) , ( r _ 2 ) ! 

1 1 
r! (r-1)! 

Then, by (2.3.1), 
n+l p-l f \ , 

0 0 
0 0 

1! a 

2! 1! 

V + 1 - i ^ 
V a ~ l J 

(2.3.2) 

(2.3.3) 

The real numbers / r (a), r = 1,2,3,..., can also be calculated recursively in the following way. 
Consider, for r eJV, 

" " / r ( « ) = (a-l)' 
-H(-l)r 

£=l 0 0 
1 a - l 0 

(r-1)! ( r -2) ! 
1 1 

(r-1)! 

0 0 
0 0 

J_ a=± 
1! a 
J_ J_ 
2! 1! 

a 
(a-iy 

-H 

1 0 0 0 
-i - ^ 0 0 
1! a 
± ± a=l Q 
2! 1! a U 

_L. _I_ 
(r-1)! ( r -2) ! 

J_ 1 
r! (r-1)! 

0 0 1 
0 0 0 
0 0 0 

_1 a=± 
1! a 
J_ J_ 
2! 1! 
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Observe that the last determinant differs from that of Sa^{n)^ as obtained by setting p~r in 
(2.2.2), only with respect to the last column. It follows [cf. (2.1.1)] that fQ(a)9 fx{a\ f2(a),... 
satisfy the recurrence formula 

f0(a) = l, a i [ ; ) / ( f l ) - / r ( a ) = 0 ( ^ l , 2 , 3 „ . . ) . (2.3.4) 

Here the equation 

a(f + iy-f = 0, (2.3.5) 

in which the binomial power is expanded and fr (r = 0,1,2,3,...) are then replaced by fr(a), 
provides a mnemonic for (2.3.4). 

Note that (2.3.4), with a = 1, is the well-known recurrence formula for the Bernoulli num-
bers. The real numbers fr(a), r = 0,1,2,3,..., could therefore be called the a-Bernoulli numbers. 
For example, by (2.3.2) or, recursively, by (2.3.5), 

f0(a) = 1, fx(a) = — , f2(a) = 2 , and f3(a) = 3—'-. (2.3.6) 

Hence, 1, - 2, 6, - 26 are the first four 2-Bernoulli numbers. 

3. FORMULAS IN TERMS OF POWERS OF n 

Let n GN. For k sNmda eR ( a * 0 , a * l ) , let 

Sa,k(n) = a + a22k+a33k + ->.+annk^arr\ 5^(0) = 0, 
r=l 

and take 

SaJ)(n) = a + az + --+an = —. 

Then, arguing as in Section 2.1, 

aV=^,(»)-^t(n-l) = ̂ ,(n)-^t^Vl)t-'^t(«). 

Hence, 

a"+V =aSa,k(n)-t (fk-l)*-'$,,,(»). (3.1) 
z=o V / 

The equation 

aSk-(S-l)k=an+lnk, 

in which the binomial power on the left-hand side is expanded and S1 (i = 0,1,2,..., k) are then 
replaced, by SaJ(n), provides a mnemonic for (3.1). 

Furthermore, methods similar to thbse employed in Sections 2.2 and 2.3 can be used to 
derive the following results from (3.1). 
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Sa,P(n) = a 
n+l 

(a-l)' 

1 
1 
1! 

1 
2! 

1 
3! 

0 

a - l 
I 
1! 

1 
2! 

0 

0 

a - l 
I 
1! 

o .. 
o .. 
o .. 

a - l .. 

• 0 

• 0 

• 0 

• 0 

0 

0 

0 

0 

a" -(n+l)(an+l-aS 

\ a-l 

n 
1! 

n2 

2! 

r? 
3! 

(-1)* ( - l ) p + 1 

(p-1)! 0 - 2 ) ! 
(-1)^+1 (-l)p+2 

P\ (p-iy. 
_J_ _L 

2! 1! 

( /? - ! ) ! 

nL 
p\ 

and 

-I 
-r=0 

with g"0(a) = 1 and, for r - 1,2, 3,..., 

^^-fnM'J*^^^ 2 ^ a n + 1 -a^ (3.2) 

& • ( « ) = 
/ • ! ( - ! / 

(a-l)' 
3! 

a-l 0 0 
£ a-l 0 

-1- -1 a-l 
2! 1! 

1=1)1 (-l)r+1 

(r-1)! ( r -2)! 
(~Dr+1 (-Qr+2 

r! (r-1)! 

0 

0 

0 

1 
1! 

1 
2! 

0 

0 

0 

a - l 
I 
1! 

The real numbers gr(a), r = 1,2, 3,..., can also be calculated recursively in a similar way as it is 
done in the case of fr(a), r = 1,2, 3,..., in Section 2.3. However, it is easier to observe that, by 
(2.3.3) and (3.2) (comparing w-free terms), fr(a) - asX°) f°r ea°h r G^. Hence, by (3.2), 

«+l n p-l s \ ( ~n i 

°'pK ' a-l a - l ~ W JpK \a-l 
, for p > 1. (3.3) 

For example, let p = 2 in (3.3). Then, by (2.3.6), 

In particular, 

s-.^'~i"'+~l^"+M'^T 
a"+1

 2 2an+1 (a + a2)(a"-l) 
a-l (a-iy (a-iy 

n ott+1 o«+l o«+l 

3,2V ' £f 2 2 2 
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