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INTRODUCTION 

The connection between the Euclidean algorithm for determining the greatest common 
divisor of two positive integers a and b and the continued fraction expansion of the rational 
number alb is well known. As Lame [9] observed, two successive Fibonacci numbers Fn_x and Fn 

provide a pair of integers for which the Euclidean algorithm takes as long as possible to terminate, 
in the sense that (Fn_h Fn) takes as long or longer than any pair (a, b) with b > a > 1 and b<Fn. 
Analogous results hold if arithmetic is done in Q[x] or ¥[x], for F' [x] the finite field with q- pa 

elements [4], [6], [7], [10]. 
One can view the continued fraction expansion more generally as an association with a real 

number of a sequence of positive integers, the sequence being finite if and only if the real number 
is rational. Other methods exist to accomplish the same task. Two in particular of interest are the 
so-called Engel expansion and the Pierce expansion. Each arises from an iterated division algo-
rithm, but the roles of successive dividends and divisors are played by different elements than in 
the Euclidean algorithm. 

In particular, for 1 < a < b integers, the Pierce expansion of alb is the unique representation 

£.±-_L+_>—...+.trL, (1) 

where the xi are integers with 1 < xx < x2 < • • • < xn. Successive xt may be obtained via the divi-
sion algorithm. Write b = qa+r with q and r nonnegative integers and r < a. Then a = ^ ~ and 
so f = -i---i-(^). Thus, xx=q, and the procedure may be applied again to the fraction rib. The 
iteration stops when r = 0, which must happen after at most a steps (see [11]). A convenient 
notation for this expansion is 

— (x1? x2, x3,..., xn). 

The Engel expansion is a similar expansion with all positive terms. Thus, for 1 < a < b inte-
gers, it is the unique representation of the form 

a 1 1 1 1 /ox 
- = —+ + + ...+ , (2) 
b Ji AF2 MM M2-yn 

where the yi are integers with 1 < yx < y2 < • • • < yn. Here one would iterate the version of the 
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division algorithm with negative remainders. Thus, h = qa + r = (q + l)a - (a - r) and, hence, a = 
b+(a

+~r) gives f- = "tf+ -^Y(^-)- The procedure is applicable again until r = 0. This expansion is 
frequently denoted 

Maximal lengths and other properties of Pierce and Engel expansions have been studied in [2], 
[11], [13], and [14]. 

In the case of polynomial rings, the appropriate measure of the size of the remainder is given 
by its degree, so that signs are no longer relevant and there is no distinguishing the Pierce and 
Engel expansions. For the Fibonacci polynomials [1] defined by 

Fx(x) = 1, F2(x) = x, Fn+l(x) = xFn(x) + F„^(x) for n > 2, 

and the Lucas polynomials given by 

4(x) = 2, LL(x) = x, Ln+l(x) = xLn(x) + Lh_l(x) forn>l , 

there are some especially attractive continued fraction expansions. In particular, 

1 
X + - 1 

+— 
X 

where there are n -1 occurrences of x in (3), and 

A,-i(*) _ 
4 « x+- l ' (4) 

x + - ^ 
1 

x/2 
where the continued fraction in (4) has n x's in its expansion. 

Motivated by these expansions, we consider the Pierce-Engel expansions of these rational 
functions. In contrast to the longest possible expansions in their continued fraction expansions, 
the Pierce-Engel expansions are predictably short. For some special values of n they are espe-
cially short and elegant. 

There are also regularities to note in the Pierce expansions of the rational numbers Fn_x I Fn 
and Ln_xl Ln. One such follows from a general result of Shallit [13], and we establish others in 
the last section. 

EXPANSIONS OF FIBONACCI AND LUCAS POLYNOMIAL QUOTIENTS 

We are most interested in the quotients Fn_x(x) I Fn{x) andZ„_1(x)/Z„(x), although the 
theorems we use apply more generally. Since in the limit we have 

1 . m F w . 1 ( l / x ) ^ - l + Vl + 4x2 

"-»« Fn{llx) 2x 

154 [MAY 



PIERCE EXPANSIONS OF RATIOS OF FIBONACCI AND LUCAS NUMBERS AND POLYNOMIALS 

as n increases there are ever more terms incorporated in the infinite Pierce/Engel expansion of this 
function, shown in [3] to be 

1 1 1 1 
I4l) 4(2)4(2) L^L^L^z) Z,(Z)^(*)Z4(Z)Z«(Z) ? 

where z = x~\ This particular expansion is also a concrete example of the Engel-type expansions 
for power series developed in [8], This limiting case sets the pattern for the finite expansions of 
rational functions in the variable x. Using the notation (a, b, c, d, ...) introduced earlier for the 
expansion 

1 1 1 1 
— + — + + -a ab abc abed 

the finite expansion beginning 

1 1 1 1 
Lx(x) Ll(x)L2(2) L1(x)L2(x)L4(x) Ll(x)L2(x)L4(x)Lg(x) 

can be written more compactly as (Lh - L2, L4, Z8,...). Later we also allow more complicated 
expressions involving Lucas polynomials as entries. 

It is possible to write an alternate representation in terms of the Chebyshev polynomials 
Cw(x) = 22;(x/2),where 

35(x) = l, Tl(x) = x, rw+1(x) = 2xJ„(x)-rw_1(x) for 71*1, 

since CJx) = (-i)nLn(ix). 

The form of the expansions follows from two general results in [1], which we state as 
lemmas. 

Lemma 1: Whenever a Fibonacci polynomial Fm(x) is divided by a Fibonacci polynomial 
Fm_k(x), m^fc, of lesser or equal degree, the remainder is always a Fibonacci polynomial or the 
negative of a Fibonacci polynomial, and the quotient is a sum of Lucas polynomials whenever the 
division is not exact. Explicitly, for p > 1: 

(t) the remainder is ±F(2p_l)m_2kp(x) when 

2p\m\ (2p-2)\m\m 

2/7 + 1 ' ' 2p-l ' 

(ii) the quotient is ±Lk(x) when \k\< 2\m\/3; 

(Hi) the quotient is given by 

ePw=ii(-i)'(,,"k)A2/+i)it-2/mW 
7=0 

for m, k, mdp as in (i), and by Qp(x) + (-l)**-*) if k = 2pmI' (2p +1); 

(iv) the division is exact when k = 2pm I (2p +1) or k = (2p - X)m 12p. 
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Lemma 2: Whenever a Lucas polynomial Lm{x) is divided by a Lucas polynomial Lm_k(x), 
rn^k, of lesser degree, a nonzero remainder is always a Lucas polynomial or the negative of a 
Lucas polynomial. Explicitly: 

(i) nonzero remainders have the form ±L^2p-i)m-2pk(x) when 

2p\m\ (2p-2)\in\, 
2p + l ' ' 2/7-1 ? 

(ii) if \k\< 2\m\/3, the quotient is ±Lk(x); 

(iii) the division is exact when k = 2pm I (2p +1), p ^ 0. 

These lemmas apply to give 

Theorem 3: Any quotient of Fibonacci polynomials or Lucas polynomials has a (finite) Pierce-
Engel expansion in which every entry is expressible as a linear combination of Lucas polynomials 
with coefficients 0 or ±1. In the case Fn_Xx) I Fn{x) or Zw_1(x)/Z/1(x), there are at least m = 
[log2 nj entries, and the first [log2 n\ entries are (Lh - L2, L4,..., L2m-i). 

Proof: The Pierce-Engel expansion for quotients of Fibonacci polynomials comes from the 
sequence of identities 

F„(x) = Lk(x)Fn_k(x) + {-l)k+lFn_2k{x) 

Fn(*) = Ltk(.x)Fn-2k(x) ~ Fn-4k(X) 
^(*) = L4k(x)Fn_4k(x)-F„_u(x) 

which may be continued as long as the last subscript remains nonnegative. These identities may 
be read as special cases of Lemma 1. Lemma 2 provides similar identities for Lucas polynomials. 
A negative subscript is replaced by a positive subscript via the identity Fm(x) = (-l)m+lF_m(x). 
Then 

Fn(x) Lk(x){ ' Fn(x) 

1 
Lk(x) 1+-B> 

L*(x) 

k \ F„_4k(x)^ 
V Fn(X) J) 

= (Lk(xl(-l)kL2k(xlL4k(x),..). 

Table 1 on the following page gives Pierce-Engel expansions of some rational functions for 
small values of n. 

The next theorem was obtained in [3] and [16]. The technique of proof can be modified to 
provide several other similar relations, which are collected in the theorem thereafter. 

Kn Xx) 
Theorem 4: For n > 1, * l = (Z^ - i^, Z4,..., Lr_x) 

^2" \X) 
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TABLE 1. Expansions of Quotients of Fibonacci Polynomials 

n 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Pierce-Engel Expansion of F^x) 1 Fn{x) 

~LX 

Lb-(L2-l) 
Lb - L2 

^ h ~ ^ 2 ? ^ 4 ~~ ^2 ~^~ •*• 

M J ~~ ^ 2 ? ^ 4 ~̂~ * 

^ b — ^ 2 ? ^ 4 ? ^ 6 ~~ ^ 4 ~*~ ^ 2 ~~ * 

^ 1 ' ~" ^ 2 ? ^ 4 

^ b ~~ ^ 2 ? ^ 4 ? ^ 8 — ^ 6 ~̂ " ^ 4 — ^ 2 "*" -*-

J L J , ^ 2 ' 4? 8 4 

A> ~~ ^2? ^4? ^8 ~ ^2? ~~ (At) ~" ^8 + ^6 ~~ ^4 + ^2 ~ V 
A? ~~ ^2 ' ^4? ^8^~ * 
A? ~~ ^2? ^4? ^8? A o ~~ ^4? ~~ ( A 2 ~~ A o + ^8 ~ ^6 + ^4 
A> ~ ^2> ^4J ^8> ~~ ( A 2 + £g + £4 + 1) 
A? ~~ ^2? ^4? ^8? ^14 — A2 + Ao — ^8 + ^6 ~~ ^4 + ^2 — 

A ' ~~ ^2? ^4' ^8 
A? ~~ ^2? ^4? ^8? ^16 ~ A 4 + ^12 ~~ At) + ^8 ~~ ^6 + ^4 ~ 
A ' ~ ^2? A ? ^8> ^16 + A2 + ^8 + ^4 + * 

-Z2 + l) 

1 

-Z2 + l 

F (x) 
Theorem 5: For n > 1, *2"'' x = (A, - L,, Z4,..., Z, Z,„+1 +1). 

F 3 . 2 " ( X ) 

F o r „ > 2 , ^ « 

For T?>3, 

/- 2 n- l ^ 

z1,-z2,z„...>v-.S(-i)'4/-i 

A.-Za.A.-.V"- ZH) , Z* + 1 
2"- ' - l 

/=0 

There are, in addition, dual results for Lucas polynomials. A brief table of Lucas polynomial 
expansions follows (see Table 2), and a general theorem (Theorem 6) makes explicit some of the 
patterns apparent in the table. Other patterns may be noted in the tables as well. 

L (x) 
Theorem 6: For n > 2, f~l\J = (i1, - L>, Z4,..., Lr_u Lr 12). 

For ft>2, 2 

Z2"+1W 
M? -^2J ^4? •••5 ^ / 2" _ 1 ? 2^^-i 
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Ln (x) f 2"~1-2 ^ 
For n > 3, 2""2 = \LV9 -4, L4,..., L^u - ^ 4 / +1 

L
2"-lW l /=0 

L n (X) 
For « > 1, 3'2 l = (A, - 4 , Z4,..., Z2„, Z2M+1 -1). 

It is interesting to note the Lr 12 entry, in light of the last convergent of (4). 

TABLE 2. Expansions of Quotients of Lucas Polynomials 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Pierce-Engel Expansion of L^^x) 1 Ln(x) 

V 2 
Ly,-Lzl2 
h 
Li 

Li 

Li 
Li 

Li 

Li 

Li 

h 
L\ 
L\ 
Li 

A 
L\ 
Li 

Li 

- ( L 2 + l) 
-L2,LJ2 
- L2, L4 + L2 + l 
-L2,LA-\ 
-L2,L4,-(L6 + L4 + L2 + l) 
— L*2, L4, L%I2 
-L2,L4,L% + L6 + L4 + L2 + \ 
~ L2, L4, Lg — L4 +1 

» 2» 4 > 8 2? 10 8 6 4 2 

» ~ ^ 2 ' ^ 4 ' ^ 8 ~ ^ 

» ~ 2̂> A ' 8̂> ~ (Ao + 4 ) ' ~~ VM2 + At) + ^8 + ^6 + ^4 + ^2 
, - Z>2, ^4» ^8> M 2 ~ ^8 + ^4 ~ 1 
,- L2, L4, Ls,-(Ll4 + L12 + Ll0 + Ls + L6 + L4+ L2 + l) 
, — L2, L4,L%, L16/2 
>- ^2, £4, £g, A6 + A4 + Ll2 + L10 + L8 + L6 + L4 + L2 +1 
» ~" ^2' ^4' 4 ' A6 ~~ A2 + A _ ^4 + 1 

+ 1) 

PIERCE EXPANSIONS OF QUOTIENTS OF FIBONACCI NUMBERS 

The limiting value of Fn_l/Fn oiL^JLn is the same: (V5 - l ) / 2 . Hence, Engel expansions 
eventual/y begin with the pattern of numbers in the Engel expansion of(V5- l ) /2 : 

i.e., 
2,5,6,13,16,16,38,48,58,104,177,263,..., 

V5-1 1 1 1 = ~ + + +• 
2 2 2-5 2-5-6 

There is no pattern apparent in this sequence. In contrast, Pierce expansions begin 

1,2,4,17,19,5777,5779,192900153617,..., 
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corresponding to 
V5-l = 1_J_ + _ 1 1 

2 2 2-4 2-4-17 
The Pierce expansion has been analyzed before [13]. it is convenient to express it as 

{ 1 , ^ - 1 , ^ + 1 , ^ -1 , ^ + 1,...}, 

where c0, cl9 c2, ...= 3,18, 5778,... is the sequence given by the recurrence 

For Fn_ll Fn orZ^/Zfc, any particular choice of n gives a rational number and, hence, a finite 
Pierce expansion, and it often happens that the form of the finite expansion can be given con-
veniently in terms of the elements of {cj. It turns out to be powers of three that govern the pat-
terns arising, and there are similar results for the Fibonacci and Lucas sequences. 

Shallit [13] observed that, for k > 0, 

Cu = 

?* . . . i * 

3 + ViH T3-V5 
2 

This relates {ck} to the well-known formulas 

J 

where ^ = (l + V5)/2 and ̂  = ( l -V5) /2 . 

Theorem 7: For k>\ i y ^ / 'iy = (1, c0 - 1 , c0 +1, q - 1 , cx +1,..., c ^ -1). 

We prove this with the aid of several lemmas. The lemmas may be of independent interest for 
the factorizations they provide for certain Fibonacci and Lucas numbers. 

Lemma 8: ck = L k, k > 0. 

Proof: 
\3' 

^2\3* , /12\3; _ 
^2-3' 

k , _ ^k 

+ 3 + V5T f3-V5^ 
V 2 , 

= (^)3+(^)3 = ^ 
2 

^ 4 A similar sequence, introduced by Shallit in [12], provides a formula for the 3 th Lucas 
number. 

Lemma 9: F3* = (c0 - l)(q -1) • • • {ck_l -1), k>\. 

Proof: For k = l9 F3 = 2 = cQ-l. Now, using induction on k, 

(c0-l)(cl-l)-.(ck-l) = F3k(ck-l) 

= (f" - ft* )(̂ 2"3* + 02'3' -l)/S (by Lemma 8) 

= (̂ 3*+1 - $k+l) / S (since # = -1) 
= F3k+i. 
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Lemma 10: L^ = (c0 + l)(q 4-1) • • • (ck_x + 1), k > 1. 

Proof: Again Induct on k. 

Lemma 11: F2^k = (c0 -l)(c0 +1) • • • (q_j - l ) ^ + 1), k>\. 

Proof: F k - FkL^, and the result follows from Lemmas 9 and 10. 

Lemma 12: ck-]}k+2, k>0. 

Proof: L\k + 2 = ( / +^f = ?* +^ 3 * +2(4/ +2 = ?* +^ = ck. 

By Lemma 8? this says L k = llk + 2, so Lemma 12 also follows from the identity L4n_2 -
4 _ i + 2 , n>\. 

Lemma 13: ^ + i _ 1 = ̂ t^C^* + *) + L3k> k~1' 

Proof: The left-hand side may be written as {(/? _1 - <j? ~l)l 45. Write the right-hand side 
as ($3 _ 1 - ^ 3 _1)(^2"3 + ̂ 2'3 -1)/V5+^3 +^3 by applying Lemma 12. This may be expanded 
as 

=F3t+,_1+((#)3*(^3V-1-/r1)-/r1+^r1+V5/+V5^)/V5 
= ̂  _, + $3* (-*"' + r' + V5) + / tf-1 - f * + V5)) / V5. 

But this is just Fk+l_{, since ^_1 - </Tl + V5 = 0. 

Proof of Theorem 7: The proof is by induction on k. For & = 1, F21F3 = 1 / 2 = (1, c0 -1). 
Now assume the theorem holds for k, and consider 

F 3 * - l ^ 1 ( 1 1 
(l,c0 l,c0 + l,...,ct 1) ^ +-(Co_1)(Co + 1 ) . . . ( C f c i _ 1 ) ^ _ i + 1 ( C j k _ 1 + l)(C j t - l) , 

= 5*_L 1 ck-2 
" i> + (C0 - 1)(C0 + 1) • • • ( C ^ - 1) {Ck_y + \){0k - 1) 

J_ 

_F3t_1Z^t(ct-l) + cfc-2 

_F 3 M ( C f c - l ) + ( c i t - 2 ) / ^ 

by Lemmas 9 and 10 

by Lemma 9 
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= _ ^ _ _ i — ^ J _ Dy Lemma 12 

= - 4 ; — - by Lemma 13. 
i > i 

W e note that the Pierce expansion considered by Shallit [13] is similar to but not the same as 
that of Theorem 7 or Theorem 14 below. 

Theorem 14: For k>\ 

- ^ = {\cQ~\cQ + \cl-\cl + \...,ck_2-\ck_2 + \ck_l + l). 
L3k 

Proof: By Theorem 7, 

{\cQ-\cQ + \cl-\cl + \...,ck_2-\ck_2 + \ck_l + l) 
F 3 * - . , 1 
F3k ' (<\,-l)(cb + l ) - ( c t _ 2 + l) 

F3k ^3kL3k ^3k^3k L 

( 1 1 

3* 

The last step follows because 

F3MZ,3* +2 = (/-1-^3'-1)(/ +^3*)/V5 + 2 
=ĉ 2-3*-1 - ^•3*-1+r1 - r1+2V5) / s 

= ( /" ' + ̂ - 1 ) ( / - ̂  ) / V5 = Z , ^ . 
There are many related identities that can be noted. W e close with the omnibus theorem 

below, indicating several patterns that we have observed. The proofs are omitted, since the iden-
tities may be derived in the same way as the paradigms in Theorems 7 and 14. 

Theorem 15: For n = 2 • 3k, k > 1, 

F« 

For n = 4-3*, k > 1, 

F*=± = (l,c0-\,c0 + l,...,ck_1-\,ck_l + l). 

For « = 8-3% k>\, 

F 
-^± = (l,c0-l,c0 + l,...,ck_l-l,ck_l + l,ck). 

F 
- ^ = (1,^-1,^ + 1,...,ck-\ck+l,ck+ck+l). K 
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For« = 5-3\ k>l, 

For » = 7-3*, k>\, 

Z7 

- ^ = (\cQ-\c0 + l,...,ck-l,ck + l,(ck-l)ck-i). 

17 
-*± = (1, c0 - 1 , c0 +1,..., ck -1, ck +1, ({ck - \)ck - \)ck - (ck -1)). 

Forw = 2 - 3 \ k>\, 

For « = 4-3*, k>\, 

For« = 8-3\ k>\, 

^ = (l,c0-l,c0 + l,...,ck_l-l,ck_1 + l,c!c/2). 

±f± = (l,c0-l,c0 + l,...,ck-l,ck+2,c2
k/2-l). 

-f± = (l,c0-l,c0 + l,...,ck-l,ck + l,ck+l-ck,ckck+l/2-(c2
k/2-l)). 

For« = 5-3fc, k>\, 
T 

= (l,c0-l,cQ + l,...,ck-1, ck, ck+2, ck+ck-l). 

Forw = 7 -3 \ k>\, 

^ = (l,c0-\,c0 + \,...,ck-l,ck + l,(c2
k+ck-2)ck-i). 

We note finally that nonlinear recurrence relations also arise in the expansions of certain 
rational numbers by means of other related algorithms (see [5], [15]). 
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NEW EDITORIAL POLICIES 
The Board of Directors of The Fibonacci Association during their last business meeting 
voted to incorporate the following two editorial policies effective January 1, 1995 

1. All articles submitted for publication in The Fibonacci Quarterly 
will be blind refereed. 

2. In place of Assistant Editors, The Fibonacci Quarterly will change 
to utilization of an Editorial Board. 
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