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1. INTRODUCTION 

Over many years in this journal there have appeared results concerning congruence and divi-
sibility in relation to the Fibonacci and Lucas numbers. Here we take four such results and 
translate them to sequences which generalize the Fibonacci and Lucas sequences. 

We hope that the nature of our results will demonstrate to the beginning Fibonacci enthusiast 
that there is scope to obtain further generalizations of a similar nature. 

2. THE SEQUENCES 

In the notation of Horadam [7] write 
W„ = W„(a,b;p,q), (2.1) 

meaning that 
W^pW^-qW^, W^a,Wx=b, n>2. (2.2) 

We assume throughout that a, b, p, q are integers. 
The auxiliary equation associated with (2.2) is 

x2-px + q = 0, (2.3) 
whose roots 

a = Z ± V 2 ^ p=P-^Z^ (2.4) 

are assumed distinct. We write 
A = (a-0)2=p2-4q. (2.5) 

We shall be concerned with specializations of the following two sequences: 

\U„ = W„(p,l;p,q), 
\Vn=W„(2,p;p,q). 

(2.6) 

The sequences {Un} and {Vn} are the fundamental and primordial sequences, respectively, gen-
erated by (2.2). They are natural generalizations of the Fibonacci and Lucas sequences and have 
been studied extensively, particularly by Lucas [11]. Further information can be found, for exam-
pie, in [1], [7], and [10]. 

The Binet forms for U„ and V„ are 
a"-B" 

U» = ̂ z-ir> (2-7) 
a-p 

Vn = an+J3n. (2.8) 
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These sequences can be extended to negative subscripts by the use of the recurrence (2.2) or the 
Binet forms. 

We will make use of the following well-known results which we state for easy reference: 

<fU_„ = -U„, (2.9) 

<fV-n=Vn, (2.10) 

U2„ = U„V„, (2.11) 
ifmlnthenl/'Jt/,,. (2.12) 

The following identities, which occur in Bergum and Hoggatt [1], will also be needed: 

Un+k+qkU„_k=U„Vk, (2.13) 

U„+k-qkU„„k = UkVn, (2.14) 

Vn+k+qkVn_k=V„Vk, (2.15) 

Vn+k-q%-k = W„Uk. (2.16) 

The sequences 
Ujn = Wn(0,\;p,-l\ 
\y„ = Wn{2,p;p,-\), 

are an important subclass of the sequences (2.6) and can be looked upon as an intermediate level 
of generalization of the Fibonacci and Lucas numbers in which p = 1. The specializations p = 2 
and p = 2x also yield cases of interest. For p = 2 see [4], [8], [15] and for p = 2x see [9], [12], 
[13]. 

We use the Un-Vn notation throughout to refer to the sequences (2.6) and to the sequences 
(2.17). There will be no ambiguity since we shall always indicate the set to which we are referring. 

3e CONGRUENCE RESULT I 

Singh [17] gives the following: 
Lr^l (mod40) for w>2. (3.1) 

Generalization: Let {U„} and {VJ be the sequences defined in (2.17). Then 

Vr ^VA (modAU6Ul0l /i = 2,4,.6,-.., (3.2) 

Vr^V, (modAU6U20V2(V4-l)l w = 3,5,7,..., (3.3) 
and so 

Vr s V4 (mod AU2U6) for n > 2. (3.4) 

Proof: We shall use the following, all of which can be proved using Binet forms: 

V2M=V£-2, (3.5) 

p(VA + l) = U6, (3.6) 
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V4-2 = Ap2, (3.7) 

p(V2+V4-l) = Ul0, (3.8) 

p(Vs + l) = U6(V4-l), (3.9) 

Ap2V2
2=Vs-2, (3.10) 

PV2(V2+VS-1) = U2Q. (3.11) 
Using (3.5) twice, we also obtain 

V2k+2=V2\-4V2
k+2. (3.12) 

Now (3.2) is true for n = 2 and if it is true for n = k (even) then by (3.12) and the induction 
hypothesis 

V2k+2 = V*„ - 4V2
k +2 = V4

4- 4V2 + 2 (mod AU6U10). 

Butby(3.6)-(3.8), 

(V4*-4V4
2

+2)-V4 = (V4 + W4-2)(V2+V4-l) = AU6U10. 

This proves (3.2). Congruence (3.3) can be proved similarly by making use of (3.9)-(3.12). 
From (2.16) we see that Vs-V4 = AU2U6, and (2.12) shows that AU2U6 divides both moduli 

in (3.2) and (3.3). This proves (3.4). • 
Putting V„ = Ln so that Un=Fn,we see that (3.4) reduces to (3.1). 

4. CONGRUENCE RESULT H 

Berzsenyi [2] states that 

rfn+i - 1 (mod 24), n an integer. (4.1) 

Generalization: Let {Un} and {VJ be the sequences defined in (2.17). Then 
uL+i = l (mod£/4C/6), n an integer. (4.2) 

Proof: 

= V^3n+l+3n ~ ^3n+l-3n)v^3n+l+3n + ^3«+l~3«) (4 .3 ) . 

~ ^3n^3n^3n+Y3n+ly 

where we have usea v2.13) and (2.14) with q--\. 

Taking m to be an integer, we consider two cases: 
Case 1. n = 2/tf + l. Using (2.11), the right side of (4.3) becomes Ul2m+6U12m+s. Then by 

(2.12), U4 \Ul2m+s and U6 \Ul2m+6 and (4.2) follows. 
Case 2. n = 2m. Using (2.11), the right side of (4.3) becomes Ul2mU12m+2. Since £/4|£/12w, 

C/6\Ul2m, and (£/4, C/6) - U2 \Ul2m+2, then £/4C/6\Ul2mUl2m¥2 and (4.2) follows. 

This completes the proof of (4.2). D 
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5, CONGRUENCE MESULT ffl 

Freitag [5] gives the following: 
^ = 3 (mod 10) (5.1) 

for all primes p > 5 and natural numbers k. We caution against confusing the prime p with the 
parameter/?. 

Generalization: Let {Un} and {Vn} be the sequences defined in (2.17). Then 

^ ^ (mod 40). (5.2) 
Proof: Using (2.16), we see that 

K+n ~K = (P2+4)U6U„+6 = p(p2 + l)(p2 + 3)(p2+4)Un+6. (5.3) 

The right side of (5.3) is divisible by 40 since 5 divides either p, p2 +1, or p2 + 4 and %\p(p2 +4) 
ifp is even while 8|(p2 + l)(p2 + 3) ifp is odd. 

To see that (5.2) generalizes (5.1) we note that, as observed in Bruckman [3], 

2p*=2 or - 2 (mod 12) (5.4) 

for all primes p > 5. Now, since 1^ = L_2 = 3, (5.1) follows from (5.2) and (5.4). • 

6* A DIVISIBILITY MESULT 

Grassi [6] gives the following: 
\2\{F4n_2+F4n + (6.1) 

168|(F8„_4+F8„ + (6.2) 

Generalization: Let {£/„} and {Vn} be the sequences defined in (2.6). Then for n > 0, k > 1, 

^2Jfc-1^4fc-2^6Jfc-3l(# ^{4k-2){2n-l) ~ 9 ^(8Jfc-4)w + ^(4fc-2)(2«+l))> ( 6 - 3 ) 

^ n ^ l ( ? 4 ^ 4 f c ( 2 n - l ) + ? U ^ + ^ ( 2 „ + l ) ) - (6-4) 

Proof: We prove (6.3) by using reasoning similar to Mana [14]. Fixing k and denoting the 
dividend by G^k) we have, by (2.9), 

G0 = q U-(4k-2)+ U4k_2 

= -U4k_2 + U4k_2 = 0. 

Also 
G<*> = q4k-2U4k_2 - q2k-lUu_4 + Um_6 

= 14k-2U2k-y2k-i + U2k_lVm_5 [by (2.11) and (2.14)] 
= U2k_y6k_3V4k_2 [by (2.15)]. 

Now {G^} can be regarded as the sum of three sequences each satisfying the same homogeneous 
linear second-order recurrence relation with integer coefficients (see Shannon and Horadam [16]). 
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Hence, {G^} also satisfies this second-order recurrence. Therefore, since U2k-iV4k_2V6k_3 

and U2k_^k_2V6kJG[k\ then U2k_^Ak_2V6k_3\G^ forallw>0. Since k was arbitrary, the proof 
of (6.3) is complete. The proof of (6.4) is similar. • 

Taking {U„} = {Fn}, {Vn} = {Ln} and putting k = 1, we see that (6.3) and (6.4) reduce to (6.1) 
and (6.2), respectively. 

7. CONCLUDING COMMENTS 

We have chosen an assortment of results requiring essentially different methods of proof 
For the most part, the moduli or divisors in question are products of terms from the relevant 
sequences. We feel that with this observation there is scope for the beginner to discover gen-
eralizations of a similar nature. 

ACKNOWLEDGMENT 

We gratefully acknowledge the comments of an anonymous referee whose suggestions led to 
the final form of most of our results and provided other ways of streamlining this paper. 

REFERENCES 

1. G. E. Bergum & V. E. Hoggatt, Jr. "Sums and Products for Recurring Sequences." The 
Fibonacci Quarterly 13.2 (1975): 115-20. 

2. G. Berzsenyi. Problem B-331. The Fibonacci Quarterly 14.2 (197r6):188. 
3. P. S. Bruckman. Solution to Problem B-314. The Fibonacci Quarterly 14.3 (197'6):288. 
4. J. Ercolano. "Matrix Generators of Pell Sequences." The Fibonacci Quarterly 17.1 (1979): 

71-77. 
5. H. T. Freitag. Problem B-314. The Fibonacci Quarterly 13.3 (1975):285. 
6. R. M. Grassi. Problems B-202 and B-203. The Fibonacci Quarterly 9.1 (1971): 106. 
7. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibo-

nacci Quarterly 3.2 (1965): 161-76. 
8. A. F. Horadam. "Pell Identities." The Fibonacci Quarterly 9.3 (1971):245-52, 263. 
9. A. F. Horadam & Bro. J. M. Mahon. "Pell and Pell-Lucas Polynomials." The Fibonacci 

Quarterly 23.1 (1985):7-20. 
10. D. Jarden. Recurring Sequences. Jerusalem: Riveon Lematematika, 1966. 
11. E.Lucas. TheoriedesNombres. Paris: AlbertBlanchard, 1961. 
12. Bro. J. M. Mahon & A. F. Horadam. "Matrix and Other Summation Techniques for Pell 

Polynomials." The Fibonacci Quarterly 24.3 (1986):290-309. 
13. Bro. J. M. Mahon & A. F. Horadam. "Pell Polynomial Matrices." The Fibonacci Quarterly 

25.1 (1987):21-28. 
14. P. Mana. Solution to Problem B-202. The Fibonacci Quarterly 9.5 (1971):547. 
15. C. Serkland. "Generating identities for Pell Triples." The Fibonacci Quarterly 12.2 (1974): 

121-28. 
16. A. G. Shannon & A. F. Horadam. "Special Recurrence Relations Associated with the 

Sequences {Wn(a, b; p, #)}." The Fibonacci Quarterly 17.4 (1979):294-99. 
17. S.Singh. Problem B-694. The Fibonacci Quarterly 29.3 (1991):277. 
AMS Classification Numbers: 11B37, 11B39 

130 [MAY 


