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The Stirling numbers of the second kind S(n, k) have been studied extensively. This note 
was motivated by the enumeration of pairwise disjoint finite sequences of random natural num-
bers. The two main results presented in this note demonstrate some invariant and minimum 
properties of the Stirling numbers of the second kind. 

Combinatorial arguments are used to establish these results; hence, it would be helpful to 
recall that S(n, k) counts the number of ways to partition a set of n elements into k nonempty 
subsets. The first main result is 

Theorem 1: Let r = (r1?..., rm) be an /w-tuple of positive integers, and let N be a positive integer. 
Denote by f(N; r) the number of m pairwise disjoint finite sequences of rolling an iV-faced die, in 
which the Ith sequence consists of/; trials. Then 

tU...,tm>l lj- 7 = 1 

for any j where 1 < j < m. 

Proof: Assume there are tt distinct outcomes from the ith sequence, where / &j, then the 
7 th sequence consists of at most tj - N-Jl^jtj distinct outcomes. There are {tu

N.,tm) ways to 
select the possible outcomes. For each i * j , and a fixed set of tj outcomes, there are /,- !£(//, /,-) 
ways to roll the die. The j t h sequence can be formed in tj ways. Thus, the total number of ways 
to roll the die in m disjoint sequences is 

x L NAtm^s^jd^n^r). 
tu...,tm>\ v i ' - ' W ,=i 

h+-+tm=N l*J 

This completes the proof of the claim and the theorem. • 

The special case of rn- 2 appeared in [1]. Its solution (see [2]) can be extended easily to 
provide another proof of Theorem 1 which is similar to the above proof in spirit. The following 
corollaries are immediate. 

Corollary 2: For m > TV, we have 

(N\ if m = N, f(N;r) = \ 
[0 ifm>N. 
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Corollary 3: The probability that m finite sequences ShS2,...,Sm of rolling a fair TV-faced die are 
pairwise disjoint is /(JV; r)/Ns, where r = QSl\,..., \Sm\) and S = ££UI4|. 

Corollary 4: Given a permutation a of {1,2,...,m}, define a(r)tobQ(ra^,...,raM). Then 
f(N;r) = f(N;a(r))forzllcr. 

In the proof of Theorem 1, if we assume there are ti distinct outcomes from the 7th -sequence 
for each /, we have 

Corollary 5: Let r and f(N; r) be defined as in Theorem 1. Then 
ATI m 

tl+.-+tm<N^ 

We note that f(N; r) can be expressed in an interesting form which possesses a nice com-
mutative property. Let (N)f denote the falling factorial, N(N -1) • • • (JV - / +1). Given a natural 
number /?, define N(p) as an operator with base JV and index p that operates on a polynomial 
f(N) by the rule 

rrim(p,N) 

N(p)*f(N)= X SipJWyjfiN-j). 
y=i 

Consider m = 2. Suppose the first trial consists ofy distinct outcomes, then Sx and S2 can be 
formed in S(rl9j)(N)r and (N-r^2 ways, respectively. Thus, 

f(N;(ri,r2)) = N(ri)*Nr>. 
The general result follows by induction: 

Theorem 6: The value of /(JV; r) has the commutative property 

/(AT; r) = tfft) * • • • * tf ( r ^ ) * Nr- = N(ra{l)) *•••* N^^) * tf "-<-> 

for any permutation a of {1,2y.., m). 

Our second main result is 

Theorem 7: Let/? and q be positive integers such that p + q = C for some constant C. Then, for 
a.fixed positive integer JV, the value of 

min(/?,JV) 

f{N;p,q)= £ S(p,i)NW-l)-W-i + W-'y 
1=1 

attains its minimum when | /? - #| < 1. 

Proof: From the proof of Theorem 1, we know that /(JV; /?, #) counts the number of ways 
to choose from {1,2,..., JV} two disjoint sequences Sx and £2 of length p and 9, respectively. Let 
v = 1 - 1 / JV represent the probability that some specific number does not turn up in a single toss 
of a fair JV-faced die. Because of Corollary 3, it suffices to study 

204 [JUNE-JULY 



SOME INVARIANT AND MINIMUM PROPERTIES OF STIRLING NUMBERS OF THE SECOND KIND 

Pr«> e^u^ 2 )A(r eSlnS2)) = Pr((r eS,)A(r gS2)) + Pr((> eS2)A(r €£,)) 

= vp+vq-2vc, 

which is minimum if vp +vg is. Since this is the sum of two positive numbers whose product vc 

is a constant, it follows that it is minimum when \p - q\ < 1. • 

Not surprisingly, Theorem 7 can be generalized. Let S = £™=1 rk. Then 

Vr((re[X=lSk)K(reSlnSJ, \<i <j<m)) = fj(l-vr")vs^ 

m 

For fixed S, N, m, this probability will be minimum if L - £^=11 / vr* is minimum. But L is the 
sum of positive numbers whose product 1 / vs is a constant; therefore, minimum probability is 
obtained when the rt are as nearly equal as possible. In other words, we have \rt - r y | < 1 for any 
distinct pair of integers i and/ This is equivalent to saying that R of the values rt equal Q + \ and 
the remaining m-R values equal Q, where S = mQ + R, 0<R<m. This is the same condition 
under which f(N; r) is minimum. 
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