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Let r be an irrational number between one and two. Every positive integer n can be repre-
sented in terms of r in a very simple way (Theorem 1) that perhaps deserves to be better known 
than it is. To get started, recall the customary notation [7] associated with the continued fraction 
forr: 

r = [a0,aua2,...l (1) 

p_2 = 0, p_x = 1, pt. = a.p^ + pt_2 

?_2 = 1, q_x = 0, qt = axqt_x +qf_2, 

The rational numbers pt I qt are in reduced form, and their limit is r. Moreover, 

l = qQ<ql<q2<-<qi<- , (2) 

Theorem 1: Every positive integer n has a representation 
u 

7=0 

where the c; are integers satisfying 

0<c, <a/+1'fbr0<i<w, andcM >1. (4) 

Proof: For given n, let u be the index for which qu <n<qu+l. By the division algorithm, 
there exist integers cu and nu_x such that n - cuqu +nu_l9 where 0 < nu_x < qu. Now 

(flu+i + i)0« ^ a«+i?w + &-1 = #M+i > » , 

so that cu<au+l. If wM_x > 0 then, similarly, nu_x =cu_xqu_x +wM_2, where 0<nu_2<qu_l and 
cM_j < aM, so that # = cuqu +cf£_1̂ M_1 + «M_2. If wM_2 > 0, we continue to strip away terms of the 
form ctqt until reaching the representation (3). D 

The proof of Theorem 1 occurs within a proof of a deeper theorem [3, p. 125] which is not 
primarily concerned with representing integers. (Theorem 1 may be viewed as a corollary to a 
more general representation theorem; see [1], [8, Ch. 8], and [4].) We abbreviate the representa-
tion (3) as CF(r,n) and the set of all such representations for given r as CF(r, •). By construc-
tion, CF(r, •) is a unique representation in the sense that the coefficients ci are the only positive 
integers satisfying 

u 

0 < « - ^ c , ^ . < ^ (4) 
i-s 

for s = 0,!,...,«. 

and 

for/= 0,1,2,... 
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Note that in (2) the base numbers are distinct except perhaps for ql=q0. We shall show that 
when this happens either c0 = 0 or else cx = 0; that is, the base number 1 occurs at most once in 
each evaluation of (3). For a proof, suppose that the proposition is false for some r, and let n be 
the least positive integer having CF(r, n) of the form 

n = c0>l + cl'l + c2>q2 + — + cu>qu 

with c^andc^ both nonzero. Let nf = n-c2q2 cuqu. If cx<a2-l, then 1-1 + q - l and 
0-1 + (cx +1) • 1 are distinct representations of n', contrary to the uniqueness of CF(r, n'). On the 
other hand, if q = a2, then c0 = 1 since c0<al = 1, so that c0 + cx - a2 +1. However, a2 +1 = q2, 
so that 1 • 1 + a2 • qx = 0• q0 + 0• qx +1 • q2, contrary to the uniqueness of CF(r, q2). 

Let Sj [= -̂ (r)] be the j * positive integer n for which q ^ 0 in the representation CF(r, n). 
That is, Sj is the j , t h positive integer w for which the smallest base number appearing in (3) is 1, 
Our first conjecture is that the sequence {Sj} is "almost" an arithmetic sequence. 

Conjecture 1: There exists a number / = f(r) such that \s.-jf\<2 for all j > 1. 

In order to state a second conjecture about the sequence {5.}, we recall a definition intro-
duced by I. Niven [6]. Suppose A = {Aj} is a sequence of integers. For any integers k and 
m > 2, let A( J, A, TW) be the number of indices j that satisfy \<j<J and 27- = k (mod #1). If the 
limit 

lim —A(J7k,m) 
J-»00 J 

exists and equals \lm for all & satisfying 1 < k < m, then A is uniformly distributed (mod m). If A 
is uniformly distributed (mod m) for every integer m > 2, then A is uniformly distributed. 

Conjecture 2: {Sj } is uniformly distributed. 

Conjectures 1 and 2 extend to other sequences. Let s(z, j) be the 7th positive integer n for 
which the least base number appearing in (3) is q^ 

Conjecture 3: There exist numbers / . = f(r) andi?; =Bj(r) such that \s(i,j)-jf\<Bi for all 

Conjecture 4:. For each i > 1, the sequence {s(i, j)}J=i is uniformly distributed. 

The simplest representations CF(r, •) are for r = (1 + Vs) / 2, for in this case a, =1 for all 
i > 0 , so that (3) gives the well-studied Zeckendorf representation of n. Moreover, the array 
{s(i, j)} is the Zeckendorf array, which is proved identical in [2] to the Wythoff array introduced 
in [5]. For general r, we suggest that CF(r, •) be called the r-Zeckendorf representation of n and 
that the array {s(i, j)} be called the r-Zeckendorf array. 
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