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1. INTRODUCTION

In this paper v,(r) denotes the exponent of the highest power of a prime p which divides r
and is referred to as the p-adic order of ». We characterize the p-adic orders v,(,) and v,(L,),
i.e., the exponents of a prime p in the prime power decomposition of F, and L, respectively.

The characterization of the divisibility properties of combinatorial quantities has always been
a popular area of research. In particular, finding the highest powers of primes which divide these
numbers (e.g., factorials, binomial coefficients [14], Stirling numbers [2], [1], [10], [9]) has at-
tracted considerable attention. The analysis of the periodicity modulo any integer (e.g., [3], [11],
[14], [8]) of these numbers helps exploring their divisibility properties (e.g., [9]). The periodic
property of the Fibonacci and Lucas numbers has been extensively studied (e.g., [16], [13], [17],
[12]). Here we use some of these properties and methods to find v,(£,) and v,(Z,). An applica-
tion of the results to the Stirling numbers of the second kind is discussed at the end of the paper.

We note that Halton [S] obtained similar results on the p-adic order of the Fibonacci num-
bers, and additional references on earlier developments can be found in Robinson [13] and Vinson
[15]. The approach presented here is based on a refined analysis of the periodic structure of the
Fibonacci numbers by exploring its properties, in particular, around the points where F, =0 (mod
p). [The smallest » such that F, =0 (mod p) is called the rank of apparition of prime p and is
denoted by n(p).] This technique is based on that of Wilcox [17] and provides a simple and self-
contained analysis of properties related to divisibility. For instance, we obtain another characteri-
zation of the ratio of the period to the rank of apparition [15] in terms of £, (mod p) for any
prime p.

Knuth and Wilf [7] generalized Kummer's result on the highest power of a prime that divides
the binomial coefficient. Kummer proved that the p-adic order of a binomial coefficient (,’,',J is the
number of "carries" that occur when the integers m and n—m are added in p-ary notation. Knuth
and Wilf extended the use of counting "carries" to a broad class of generalized binomial coeffi-
cients which includes the Fibonacci numbers (Theorem 2 in [7]). Their method is derived for
regularly divisible sequences [7]; however, it can be modified to include the Lucas numbers, too.
We note that L, = I2—2(-1)"; therefore, (L,,, L,) is either 1 or 2, which illustrates that the
Lucas numbers are not regularly divisible. '

If m= p{"'pg* --- pg* is the prime-decomposition of m, then v,(N) = rrlinlﬁskl_vp’_(N)/ a,-J.
Therefore, without loss of generality, we will focus on the characterization of v,(£,) and v,(L,)
where p is a prime.

2. THE 2- AND 5-ADIC ORDERS

It turns out that the 5-adic order of the Fibonacci and Lucas numbers can be computed easily.
For the Fibonacci numbers, we use the well-known identity [16]
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n-1 _ n k
2 F,,_;)(zkﬂ)S , n>1 @)

and obtain

Lemma 1: For all n>0, we have v5(F,)=v;(n). On the other hand, L, is not divisible by 5 for
any n.

Proof: Observe that

vy ((2 P 1)5") = vy(r) —vs(2k + 1) +vs (("z‘kl) 5") > vy(n) - vs(2k + 1) +k > vy(n),

except for £ = 0 when
n
Vs ((Zk N 1)5") =vy(n).
Identity (1) implies v5(F,) = vs(n).

For the Lucas numbers, the period of the sequence {L, mod 5} is 4 with the cycle {1, 3, 4, 2};
therefore, 5 can never be a divisor of [,. O

To derive the 2-adic orders of F, and L,, we use congruences proved by Jacobson [6].

Lemma A (Lemma 2 in [6]): Let k>5and s> 1. Then F,;, = 52" (mod2).

—335

Lemma B (Lemma 4 in [6]): Let k>5and n>=0 and assume »=0 (mod 6). Then F

‘ na2k33 =
F,+2% (mod 2¥).
Lemma C (Lemma 5 in [6]): Let n>0 and assume n=3 (mod 6). Then F, =2 (mod 32).

We assume that #>1 from now on. If n=1 or 2 (mod 3), then we know that 7, =1 (mod
2); thus, v,(F)=0forn=1,2 (mod 3). Lemma A yields v,(F,,) =v,(n)+4. By Lemma C, we
get w,(F,)=1if n=3 (mod 6), and Lemma B [in the more convenient form F, = F,,,, +16 (mod
32)] implies that Fy =8= F3+16=F,;= F,, +16 =--- (mod 32), and in general, Fj,,.,=-8 or 8
(mod 32); therefore, v,(F{,,.¢) = 3.

Similarly, L, =1 (mod 2) for n# 0 (mod 3). By the duplication formula, F,, = F,L,, it fol-
lows that v,(L,) = v,(F,,) —v,(F,). Therefore, v,(L,.;) =2 and v,(Lg,) = 1, for it turns out that
Vy(L2n) = Vi(Lagnes) = 1.

In summary,

Lemma 2:

0 ifn=12 mod3,
1 ifn=3 mod§6,
n(F) =13 ifn=6 modl2,

V) +2, ifn=0 modl2,

3

and

0, ifn=12 mod3,

w(l,)=42, ifn=3 mod6,
, ifn=0 modé6.
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3. p-ADIC ORDERS

In this section we assume that p is a prime different from 2 and 5. It is well known that either
1 O F,, is divisible by p for every prime p.

Let n =n(m) be the first positive index for which F, = 0 (mod m). This index is often called
the rank of apparition (appearance) or Fibonacci entry -point of m. The order of p in F,, will
be denoted by e =e(p), i.e., e=e(p) =v,(Fy;,)) > , Fy, =0(mod p°) and F, , # O(modpe“)
In this paper k(m) denotes the period modulo m of the Fibonacci series.

We shall need

Theorem A (Theorem 3 in [16]): The terms for which F, =0 (mod m) have subscripts that form
a simple arithmetic progression. That is, n=x-dforx=0,1,2, ..., and some positive integer d =
d(m), gives all n with £, =0 (mod m).

Note that d(m) is exactly n(m), and d(p") =d(p) =n(p) for all 1<i <e(p). It also follows
that F,, # 0 (mod p) unless m is a multiple of n(p). Clearly, (p, n(p)) =1. From now on we will
focus on indices of the form cn(p)p® where ¢ >1 and a >0 integers, and (c, p) =1.

We prove

Theorem: For p+#2 and 5,

v ()= p(n) +e(p) if n=0 (modn(p)), @
0, if n# 0 (modn(p)),
and
v_(n)+e(p), if k(p)+4n(p) and n="2 (modn(p)),
v,,(L,,)={ ) +e(@). i k(p) = n(p) (mod n(p)) -
, otherwise.
Proof: The basic idea of the proof'is based on the identity [16]

F,=2""F(KF} +aL}™), @

where X is an integer. We set a=p,a>1, and n=cn(p)p®~" such that (c, p) =1. Identity (4)
and Theorem A imply that

F =2"PF (KPP +plrt L)),

cn(p)p* cn(p)p cn(p)p

with some integer K'; therefore,

VoFonpype) = Vol gy pet) 15
for (F,, L,) is either 1 or 2, and inductively,
( cn(p)p“) (F;'n(p))+a- (5)

We now prove v,(F,,,)) = V,(Fy,). The multiplication identity [4]

F,,=kE,F*' (mod F?) (6)
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vields F, ., =cF, Fy, Pl)“ (mod p**) by setting n=n(p),k=c, and e =e(p). We show that
(Fr(p+1, P) =1 by deriving the congruences

~1mod p, if k(p)=4n(p),
+1 mod p, otherwise,

=F?

2
E n(p)-1=

n(p)+1 (7)
which prove that v,(F,,)) = v,(F ), for (¢, p) =1, and v (£, ,)) = e < 2e. Identity (5) implies

Vp(E ) = VpFnp) + @ = e(p) + @ and identity (2).

In order to prove identity (7), we set
Fypy-1 = x (mod p), : (®)

and observe that the Fibonacci series around the term F, =0 (mod p) must have the form
,—8x,5x,-3x,2x,-x,x,0,x, x, 2x,3x, 5x,8x,---. This sequence can be continued backward

until we reach the term F; =1, i.e., (-1)"?F, (p-1* =1 (mod p). The forward continuation yields
Fypy-1 = Fypy1x (mod p). If n(p) is even, then

Fpyx =1 (mod p) ©)

and, by identity (8), x> =1 (mod p) follows, ie., F, py-1 =X =11 (mod p). On the other hand,
Fypy-1x =1 (mod p) implies that if x =1 (mod p) then k(p) =n(p), and n(p)/2 is odd (see [17],
Theorem 1, case (iv)). It follows that k(p) is not a multiple of 4, thus p = £1 (mod 10) (see [16],
Corollary, p. 529). On the other hand, if x =—-1 (mod p) then F,,,_, =-1, [y, = F 1 x =1
(mod p), therefore k(p) =2n(p).

If n(p) is odd, then F,, ;x=-1 (mod p), and similarly to identity (8) we set Fy,, =y
(mod p) and repeat the previous argument by substituting the even 2n(p) for n(p) and y for x.
Here we have F,,, ;y=1 and ¥* =1 (mod p) with Y =Fypy-1 = Fyax =-1 (mod p). By
identity (8), we obtain that x> = —1 (mod p). We know from [16] that k(p) must be even and a
multiple of n(p), therefore k(p) = 4n(p) must hold. This case occurs, for example, if p is 13, 17,
or 61.

To prove identity (3), we apply the duplication formula L, = 1;3" , from which we can easily
deduce v,(L,). We have three cases: either n# 0 (mod n(p)) and 2n# 0 (mod n(p)), or n#0
(mod n(p)) but 2n =0 (mod n(p)), or n=0 (mod n(p)).

In the first case, v,(£3,) =v,(F,) =0 implies that v,(L,) =0. Similarly, the third case yields
v, (Fy,) =v,(F,) =v,(n)+e(p) and v,(L,) =0. The second case can never happen if n(p) is odd,
that is, k(p)=4n(p). Otherwise, n=d _%p)_ must hold with some odd integer d; therefore,
Vo (F2) =V, (Fyu ) = v,p(d) +e(p) while v (F,) =0 for n is not a multiple of n(p). The p-adic
order of L, is now v,(n)+e(p). O

In passing, we note that we fully characterized

(” ) in terms of x = F,,,, (mod p) and we

found

1995] 237



THE ORDER OF THE FIBONACCI AND LUCAS NUMBERS

Lemma 3:
k(p)=n(p), iffx=1 modp,
k(p)=2n(p), iff x=-1 mod p,

k(p) = 4n(p), iff x* =—1 mod p.
In the first case, p must have the form 10/ +1 while the third case requires that p =4/+1.
We note that identities (6) and (7) actually imply

Lemma 4: For every even c and p such that (c, p) =1,

=2 : .
- _{(—1) iy Frpya (mod pP), i k(p) = 4n(p),
(p) =

cny 2 .
¢k Fupn  (mod p%), otherwise.

For every odd ¢ and p such that (c, p) =1,

F {(—IYT“cE,(,,) (mod p2), if k(p) = 4n(p),
en(p)

¢k, (mod p*), otherwise.

The theorem yields v, (£, ,,«) = a+1 if e(p)=v,(Fy)=1. We note that a prime p is
called a primitive prime factor of F, if p|F,, but p does not divide any preceding number in the
sequence. According to our notation, p is a primitive prime factor of F, ,,. We can consider the
primitive part F, of F, for which F, = F/- F”" such that (F,, F,) =1, and p divides F; if and only
if p is a primitive prime factor of F,. If we let m =n(p), then F), is square-free exactly if e(p’) =1
for every primitive prime factor p’ of F,,, e.g., for p’ = p. [Clearly, m=n(p’) for all these prime
factors.] It appears, however, that saying anything about F, being square-free is a difficult
problem ([12], p. 49). The interested reader will find a lively discussion on the primitive prime
factors of the generalized Lucas sequences in [12].

4. AN APPLICATION

It turns out that the 5-adic analysis of the series F, and L, plays a major role in determining
vs(k!S(n, k)) where S(n, k) denotes the Stirling numbers of the second kind and n=a-5,
k=2b-5, a, b, and g are positive integers such that (a,5)=(b,5)=1, and 4|a, while z is a
nonnegative integer. For instance, if g is sufficiently large and z >0, then we can derive the
identities

_ bsz_1 +1\ - .
k'S(n k)=-2-5""L . (mod5?"), if bis even,
and
kIS k)=2-5"7 F , (mod5™), if b is odd.

In general, for even &, we obtain

|=

1 if k=0,4,812,16 (mod20),
, ifk=2,6,14 (mod20),

2 +vy(k), if k=10 (mod 20),

2 4y (k+2), ifk=18 (mod20).

?‘T‘&
N

vs(k!'S(n, k)=

Gl
&’! JB’

x~
e
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Notice that for n=a-5, 4|a, (a,5) =1, and g sufficiently large, v;(k!S(n, k)) can depend on n
only if £ is odd. Actually, it does depend on » if and only if /5 is an odd integer. The proof will
appear in a forthcoming paper. We note that the above identities are generalizations of the
identity v,(k!S(n, k)) =k —1, where n=a-27, ais odd, and q is sufficiently large (see [9]).
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