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PROBLEMS PROPOSED IN THIS ISSUE 

H-499 Proposed by Paul S. Bruckman, Edmonds, WA 

Given n a natural number, n is a Lucas pseudoprime (LPP) if it is composite and satisfies the 
following congruence: 

4 - 1 (mod*). (1) 
If gcd(/?, 10) = 1, the Jacobi symbol (5/n) = sn is given by the following: 

fl ifw = ±l (mod 10), 
£" ' -1 ifw = ±3 (mod 10). 

Given gcd(«, 10) = 1, n is a Fibonacci pseudoprime (FPP) if it is composite and satisfies the 
following congruence: 

F„_£n=0 (mod/i). (2) 

Define the following sequences for e = 1,2,...: 
u = ue = F3e+l/Fr; (3) 

v = ve = L3e+l/L3e; (4) 

w = we = F2r+l IF2y = uv. (5) 

Prove the following for all e > 1: 
(i) u is a FPP and a LPP, provided it is composite; 
(ii) same statement for v; 
(iii) w is a FPP but not a LPP. 

H-500 Proposed by H.-J. Seiffert, Berlin, Germany 

Define the Fibonacci polynomials by F0(x) = 0, Fl(x) = l, 'F„(x) = xF^x) + Fn_2(x), for 
n > 2. Show that for all complex numbers x and all nonnegative integers n, 
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[»/2]/-_ ~x 

Mn-2k F " + i W = x"FU4/x), (1) 
k=()\ J Jc=Q 

where [ ] denotes the greatest integer function. 
As special cases of (1), obtain the following identities: 

^ 2 1 1 + 2 ^ _ 1 ' 
A I n - 2k J 2k+l ~ ^ ^311+3 > K1) 

Y\n-2k)F^^-22n+lFn^ (3) 

k=0 

— izn + z)^ _02«+i 

[f(2n + 2 
k=0 
| ] (»-^)z^4( 5"+ 1- ( - i r l ) - (4) 

H-501 Proposed by Paul S. Bruckman, Edmonds, WA 

Define the following sequences for e - 1,2, ...: 
(i) u = ue=F5e+l/5F5e; 
(ii) v = ve = Lse+l/Lse; 
(iii) w = we = F25e+l 15F25e = uv. 

Prove the following: 
(a) If u is composite, it is both a Fibonacci pseudoprime (FPP) and a Lucas pseudoprime 

(LPP); see Problems H-496 and H-498 for definitions of FPP's and LPP's. 
(b) Same problem for v. 
(c) Show that w is a FPP but not a LPP. 

H-502 Proposed by Zdzislaw W. Trzaska, Warsaw, Poland 

Given two sequences of polynomials in complex variable z GC defined recursively as 

Tk(z) = fjakmzm,k = 0,l,2,..., (1) 

with T0(z) = 1 and Tx{z) = (\ + z)T0, and 

Pk{z)=Yubkmzm,k = 0,\,2,..., (2) 

m=0 

k 

I 
/w=0 with P0(z) = 0 and Px(z) = 1. 

Prove that for all z eC and k = 0,1,2,..., the equality 

Pk(z)Tk_l(z)-Tk(z)Pk_i(z)=l (3) 

holds. 
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SOLUTIONS 
Eventually 

H-485 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol 32, no. 1, February 1994) 

If x is an unspecified large positive real number, obtain an asymptotic evaluation for the sum 
S(x\ where 

5(x) = X(-!)Z(p); (i) 
p<x 

here, the/?'s are prime and Zip) is the Fibonacci entry-point ofp (the smallest positive n such that 
P\F„l 
Solution by the proposer 

Let X = {Ln}n>0 denote the Lucas sequence. It is well known that Z(p) is even iff p Gp(X), 
where p(X) denotes the set of primes/? such that/? divides an element of X. Let TTX{X) denote 
the number of primes p ep(<S£) with p<x; also, n(x) denotes the number of p < x. The density 
of p(X) is defined as lim n${x) I n{x) = 0%, assuming such a limit exists. 

x-»oo 

In 1985, Lagarias showed [1], among other things, that 0% = 2 /3 . We see that this result is 
equivalent to the following: 

\imA(x)/7r(x) = 0se = 2/3, (2) 

where 

A(x) - X 1; also> B(x) - S i . (3) 
p<x p<x 

Z(p) even Z(p) odd 

Also note that A(x) - B(x) - S(x) and A(x) + B(x) = n(x). Moreover, we recall the famous 
Prime Number Theorem, namely, 

x 
n{x) ~ (as x -> oo). (4) 

logx 
Consequently, we see that 

A(x)~-2Z-9 * ( * ) - - * — , and S(x)~B(x), 
31ogx 31ogx 

or: 

S(x)~-^-. (5) 
31ogx 

Reference 
1. J. C. Lagarias. "The Set of Primes Dividing the Lucas Numbers Has Density 2/3." Pacific J. 

Math. 118(1985):19-23. 
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Long Range PI 

H-486 Proposed by Piero Filipponi, Rome, Italy 
(Vol 32, no. 2, May 1994) 

Let the terms of the sequence {Qk} be defined by the second-order recurrence relation Qk = 
2Qk-\ + Qk-2 w ^ initial conditions QQ = Qx -1. Find restrictions on the positive integers n and m 
for 

Jc=l m 
to converge, and, under these restrictions, evaluate this sum. Moreover, find the set of all couples 
(nh nij) for which T(nh m^ is an integer. 

Solution by Charles K Cook, University of South Carolina at Sumter, Sumter, SC 

The raitio test shows that the series will converge if 

— <V2-1».4142. Thus, — (1±V2) <1. 
m I m I 

Since Qk = j[(l + 4l)k + (1 - 42)k\ it follows from the summation formula 

Y£V=^±4,|x|<i, 

that 

simplifies to 

£1 \m) 21S L̂  J H N 
k\ 

T(n, m) = /?/M(/??2 + re2)(m2 + 6rnn - ??2) 
(m2 -2mn-n2) 

The only values of (n, m) for which 7 will be integral are those satisfying m2 - 2mn -n2 = l or 
(n - m)2 = 1 + 2n . The equation 

x2-2w2 = l 

is a Pell equation with the fundamental solution xY - 3 and nx-2. Thus, the solution set 
{(xk, nk)} is generated from 

xk+ykj2 = (3 + 2j2f. 

Since m = x + « all pairs (n, m) leading to the integral values of T(n, m) are determined. The first 
four are (2,5), (12,29), (70,169), and (408,985). The first three integral values of T are 23490, 
954642300, and 37463036986830. 

Also solved by P. Bruckman, H.-J. Seiffert, and the proposer (partial solution). 
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Nice Couples 
H-487 Proposed by Stanley Rabinowitz, MathPro Press, Westford, MA 

(Vol 32, no. 2, May 1994) 

Suppose Hn satisfies a second-order linear recurrence with constant coefficients. Let {a7} 
and {£>•}, /' = 1,2,..., r, be integer constants and let f(x0, Xj x2,..., xr) be a polynomial with integer 
coefficients. If the expression 

J ( ( " V > Hain+bY > Hajn+fy > • • • > ^arn+br ) 

vanishes for all integers n> N, prove that the expression vanishes for all integral n. 
[As a special case, if an identity involving Fibonacci and Lucas numbers is true for all positive 

subscripts, then it must also be true for all negative subscripts as well] 

Solution by Paul S. Bruckman, Edmonds, WA 

Let S, = {(-1^^,^,^^^,-..,^^^} a n d fn^fm- Also, let n„ denote any 
product of the form (-l)ne°H*l

n+b -' He
a

r
n+b , el >0 and integers. Since Hn has a nullifying (i.e., 

characteristic) polynomial satisfying the recurrence relation P(E)(Hn) = 0 (here E is the unit 
"right-shift" operator, with n the operand, and P is a polynomial with constant coefficients, of 
second degree), it follows that Han+b_ also has a nullifying polynomial; then so does HeJn+b., where 
the integers ei are nonnegative. The same is true for (-l)ne°, for which the nullifying polynomial 
is E-(-l)e°. Then any product Un has a nullifying polynomial; since fn is a sum of products of 
the form IIW, it follows that fn itself has a nullifying polynomial, say G(x). Thus, G(E)(fn) = 0 
for all n. We may suppose that G(x) = Hf=mc-xJ, where M>m>0, cm*0, cM ^ 0. We con-
sider two possibilities: 

(a) m = M—then G(E)(f„) = cmfm+n = 0 for all w, which implies fn - 0 for all n; 

(b) M> m > 0. Then G{E){fN_m) = Z%mCjfN_m+J = cmfN = 0, since fN+l = fN+2 = • • • = 0, 
by hypothesis. Thus, fN - 0. 

We may repeat the process (i.e., setting n = N-l-m, N-2-m, etc.), and conclude that /„ = 0 
for all n. Q.E.D. 

Pseudo Nim 

H-488 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol. 32, no. 4, August 1994) 

The Fibonacci pseudoprimes (FPP's) are those composite integers n with gcd(«, 10) = 1 and 
satisfying the following congruence: 

Fn-en=° (mod/i), (i) 
where 

fl ifw = ±1 (mod 10), 
* " [ - ! if/is ±3 (mod 10). 
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[Thus, sn - (f), a Jacobi symbol] 

Given a prime p > 5, prove that u = ±L2 is a FPP if u is composite. 

The Lucas pseudoprimes (LPP's) are those composite positive integers n satisfying the 
following congruence: 

Ln = 1 (mod?*). (ii) 

Given a prime p > 5, prove that u = \L2 is a LPP if u is composite. 

Solution by Norbert Jensen, Kiel, Germany 

Step 0: 3 divides L2p; hence, u is always an integer. 

Proof: Consider the Lucas numbers modulo 3: L0 = 2, Ll = l9 L2 = 0, L3 == 1, L4 = 1, L5 = 2, 
Z6 = 0, 1/7 = 2, L% = 2 = LQ, 1^ = 1 = Ly (mod 3). Hence, (£w)„G ĵ has period length 8 modulo 3 
and Ln = 0 (mod 3) if and only if n = 2 or n = 6 (mod 8). But as p = 1 or =3 (mod 4), it is clear 
that 2pEE2or2p = 6 (mod 8). Q.E.D. (Step 0) 

Suppose that u is composite. We have to show that u is a FPP and a LPP. 

Step 1: We show that u = 1 (mod 10). Hence, gcd(w, 10) = 1. 
Proof: Consider the residues of (Ln)nEN mod 10: LQ = 2, L^ = 1, Ẑ  = 3, L3 = 4, L4 = - 3 , 

Z5 = 1, L6 = -2 , L7 = - 1 , L8 = - 3 , L9 = - 4 , Z10 = 3, Ln = - 1 , Ll2 = 2 = L0, Ll3 = l= Lv Hence, 
the sequence (Ln)rjeN has period length 12 mod 10. Asp is either = 1 or = -1 mod 6, it follows 
that 2p is either = 2 or = -2 mod 12. Hence, L2p = L^ - 3 or Z^ = ̂ 0 = 3 mod 10. Cancelling 
3 in the above congruences shows that u=\ (mod 10). Q.E.D. (Step 1) 

In particular, we have su = 1. So to prove that u is a FPP and a LPP, we have to demonstrate 
that Fu_x = 0, Lu = 1 (mod u). 

Step 2: We show that L%p = 2, L%pJrl = 1, F8p = 0, F8/3+1 = 1 (mod 2/). Hence, 8/? is a common 
period of the Lucas and the Fibonacci sequence modulo u. 

(Actually, it can be shown that—in terms of algebraic number theory—the order of a 
modulo the ideal ul\a\ in l\a\ is 8/?.) 

Proof: From the definition off/, it follows thata2p +/?2/? = Z^ = 3*/ or a2p = ~plp + 3w. By 
multiplication with {\lp)2p = (-a)2 p = a2/?, we obtain a4/? = - l + 3wa2p. Squaring both sides, 
we arrive at 

a*p = l-6ua2p + 9u2a4p. (2.1) 

Exchanging a and /? in these operations leads to 

]38p = l-6uf]2p + 9u2{J4p. (2.2) 

Multiplying (2.1) and (2.2) by a and /?, respectively, we obtain 

a*p+l = a- 6ua2p+l + 9*/V^1. (2.3) 

/ ^ + 1 = p - 6up2p+l + 9u2p4p+l. (2.4) 
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Summing up (2.1), (2.2) and (2.3), (2.4) gives L%p = 2 (mod u\ L%p+l = l (mod u). Now, sub-
tracting (2.2) from (2.1) and (2.4) from (2.3) and multiplying with a-p-4^ gives 5F%p = 0 
(mod u), 5F%p+l = 5 (mod u). By Step 1, 5 does not divide u\ hence, we cancel 5 in the above 
congruences. Thus, F%p = 0, F%p+l = 1 (mod u). Q.E.D. (Step 2) 

It remains to show that u = 1 (mod 8/?). 
Splitting up into congruences modulo prime powers, we obtain the following results (i.e., 

Steps 3 and 4). 
Step 3: We show that Z ^ = 3 (mod 8). 

Proof: First, we determine the period length of (Ln)neN mod 8. We have L0 = 2, Lx = l, 
L2 = J, ^3 — 4, L4 = —1, L5 = J, L6 = 2, L 7 = —3, Lg = —1, L9 = 4 , i^10 = 3, i ^ = —1, Ll2 = 2 = LQ, 

Ll3 = l = Lx (mod 8). Hence, 12 is the period length of (Ln)nEN . Since p > 5, we just have to 
consider the following two cases: 

Case 1: p = 1 (mod 6). Then 2p = 2 (mod 12) and L2p = L2 = 3 (mod 8). 
Case 2: /? = -1 (mod 6). Then 2p = 10 (mod 12) and L2p = Ll0 = 3 (mod 8). 

Q.E.D. (Step 3) 

Step 4: We show that L^ - 3 (mod/?). 
Proof: We need the following two facts: 

Ja, = 2"' I f2f>//2; (4.1) 
;=0 V ^ 7 

;=0 (mod 2) 

P = 0 (mod/?) if either o<j<p or/? <j<2p. (4.2) 

From these facts, it follows (using Fermat's theorem) that 

4 . ^ - 2 2 % ^ 2 - ( l + 50-2.6(mod/?). 

Since p and 4 are coprime, we can cancel 4 on both sides of the congruence; whence the asser-
tion follows. Q.E.D. (Step 4) 

Step 5: Using Steps 3 and 4, we obtain Z^ = 3 (mod 8/?). Now, by Step 0, and since 3 and 8/? 
a're coprime, it follows that u = 1 (mod 8/?). 

Step 6: Applying Steps 2 and 5, we see that Lu = 1^ = 1 (mod u) and Fu_1 = 0 (mod w). Q.E.D. 

4̂fao solved by H. -/. Seiffert and the proposer. 
•I* • > •!• 
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