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1. INTRODUCTION 

By terminal digits of an integer N, we mean both the initial (leftmost) digit and the final 
(rightmost) digit of N. The following notation is used throughout the paper. 

Notation 
(i) RFN (Random Fibonacci Number: An I -digit (I > 2) Fibonacci number whose subscript has 

been randomly chosen within the interval [Kx, K2], where Kx > 7 and K2 is much greater than 
Kv 

(ii) B(d): the probability that the initial digit of a EFN is d. 
(iii) E(d): the probability that the final digit of a RFN is d. 
(iv) (a)b: the integer a reduced modulo the integer b. 
(v) b \a: the integer b divides the integer a {{a)h = 0). 
(vi) Igr: the logarithm to the base 10 of x. 
(vii) (a, b): the greatest common divisor of a and b. 

Moreover, Fk and Lk will denote the k^ Fibonacci and Lucas number, respectively, whereas 
a - (1 + V5) / 2 is the golden section, and we assume that K2 -> °°. 

The principal aim of this paper is to study some probabilistic aspects of the terminal digits of 
RFN's. In particular, we shall answer questions such as: 

"What is the probability that the initial digit of a RFN is greater than its final digit?" 
"What is the probability that a RFN is divisible by its initial digit?" 

The paper is set out as follows. After establishing some preliminary results in Section 2, in 
Section 3 some simple properties of RFN's which are related to their terminal digits are discussed. 
A glimpse of possible further investigations along this avenue is caught in Section 4. 

All the results established in this paper have been thoroughly checked from the numerical 
point of view by means of suitable computer experiments. Nothing but a negligible difference 
between theoretical and experimental results has been observed even for comparatively small 
values of K2-Kx. 

2. PRELIMINARY RESULTS 

For an infinite set of real numbers (expressed in base 10) Sf = {$}Jlo> ^et P(&) ^ e ^ e proba-
bility that the initial digit of a randomly chosen (in a large interval) st is d; If 

p(d) = \g{\-^ (2.1) 

then SP is said to obey Benford's law (e.g., see [1], [4], and [5]). 
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In [2], [8], and [10] it was conjectured that the Fibonacci sequence obeys Benford's law. 
This fact has been proved in [9]; thus, we can state the following 

Proposition 1: 

B(d) = \g\l + ±\. (2.2) 

Since our proof of Proposition 1 is very short, we report it because its argument will be used in 
the proof of Proposition 3. 

Proof of Proposition 1: It is known [6] that the sets 

{$k(x, y)} = {xyk}™=0 (x andy arbitrary real quantities) (2.3) 

obey Benford's law, provided y is not a rational power of 10. Furthermore, it can be readily 
proved that the initial digit of Fk and that of ^[(V5)_1, a] coincide for all k > 6, so that it remains 
to prove that a is not a rational power of 10. To do this, write the following equivalent relations, 

a = 10"/w (n>0,m>0 integers), 
am = 10", 
Lm+j5Fm=2.\0", 

the last of which is clearly impossible because an irrational cannot equal an integer. Hence, the 
first relation cannot be true. Q.E.D. 

Proposition 2: 
ifdis even, 
if rf is odd. ( 2 ' 4 ) 

Proof: Inspection of the periodic sequence {(Fk)10}5
k
9

=0, whose repetition period is 60, shows 
us that 

Fk=d(modl0)iffk = 60n+ht(d) (n = 0,1,2,...) (2.5) 

with ht(d) depending on d and 1 < t < 4 (8) if d is even (odd). 
More precisely, we have 

h(0) = 0,15,30, or 45 h(l) = 1,2,8,19,22,28,41, or 59 
h(2) = 3,36,54, or 57 A(3) = 4, 7,13,26,44,46,47, or 53 
h(4) = 9,12,18, or 51 A(5) = 5,10,20,25,35,40,50, or 55 (2.6) 
h(6) = 21,39,42, or 48 h(l) = 14,16,17,23,34, 37,43, or 56 
h(S) = 6,24,27, or 33 h(?) = 11,29,31,32,38,49,52, or 58. Q.E.D. 

Proposition 3 (main result): The terminal digits of a RFN are statistically independent. 

Proof: It is sufficient to prove that the value of the final digit has no statistical influence on 
that of the initial digit. In other words, it is sufficient to prove that the set of all Fibonacci 
numbers whose final digit is a given d obeys Benford's law. 

If we replace [see (2.5)] y by a60, x by a*2*^ IV5, and k by n in (2.3), and observe that: 
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(i) a60 is not a rational power of 103 

(ii) the initial digit of F60n+h ^ and that of s ja^*0 / V5, a60] coincide for all n > 1, then we see 
that, for given d and t, the sequence F60n+h ^ obeys Benford's law. The set 

T = 4 K } , ?i = L2,3, sji^Qn+htid)) 
t=l 

J L , « ? ^ , . 

v 2 y 
(2.7) 

given by the union of the disjoint sets F60n+h ^ for all admissible values of t, obeys Benford's 
hw as well. Q.E.D. 

Proposition 3 allows us to establish most of the results presented in the next section. 

3. SOME STATISTICAL PROPERTIES OF RFN?S 

From this point onward, the symbols i andj will denote the initial digit and the final digit of a 
RFN, respectively. 

flg(l + l/c)/15 ifrfiseven, 
Proposition 4: Prob(/ = c, j = d) = i , , , , 

F v , J J |21g(l + l/c)/15 ifrfisodd. 
Proof: By Proposition 3 we can write 

Prob(i = cj = d) = B(c)E(d), (3.1) 

so that Proposition 4 follows by Propositions 1 and 2. Q.E.D. 

Proposition 5: Prob(i = j) = M 1 + Ig ̂  j» 0.107. 

Proof: By Proposition 4 we can write 

Prob(/ = 7) = — Vlgfl + J - V — Tlgfl + ^ — V 15̂ =1 V 2d) \SJ^B\ 2rf-l 

—[l + l g — I . Q.E.D. 15l 63 ' v 

1 512 
Proposition 6: Prob(? > /) = — lg « 0.324. 

7Y<w/: Put 

^ = I ^ W (0<^<9) (3.2) 

and write 

h 

I 
J=0 

Prob(* > j) = f B{c)Sc_x = itB(2c-l)S2c.2+flB(2£)S2c.l. (3.3) 
c=l c=l c=l 

By (2.4), it can be readily proved (e.g., by induction on h) that 
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f(3A + 2)/30 if his even, 
S - < (3 4) 
* |ft + l)/10 if/? is odd. v * J 

Hence, by (3.3), (2.2), and (3.4), we get 

•^>>>4|^-^i+^H5c*(1+£ 
_ J _ . 21 532 551 572 _ 1 , 51 2

 n p n 

" 15 8 2163305373 15g2-35-7 ^ ' 

Proposition 4 allows us to obtain the probability D(a) = Prob(j'+j = a) (1 < a < 18). After a 
good deal of calculation, we obtained 15D(a) = \gr(a), where 

r(l) = 2, r(2) = r(3) = 6, r(4) = f , r(5) = ̂ -, r(6) = ±f, r(7) = f , 

,., 1152 ,_. 1575 .... 2560 ' 1575 _, 1280 ,, „ 
K8) = — , K9) = — , '(10) = — , KH) = 12g", '•02) = li5-, 0.5) 

,(13) = ̂ , r 0 4 ) = 6 4 , r(15)=35 r(16) = 800, r ( 1 7 ) = 90, K18) = M . 
V ' 128' V ' 2V y ' 16 V ; 441' V ' 64' V ' 81 

Proposition 7: The probability that a RFN is divisible by its initial digit is 

J _ . 210934456 

120 8 7 
Prob(/|RFN) = ̂ l g ^ w 0.448. (3.6) 

Proof: An integer <i (1 < d < 9) divides i^ iff A: = hnd (h - 0,1,2,...) with «d depending on 
rf. By inspection of the periodic sequences {{Fk)d}, we get 

«! = !, »2 = 3, «j=4, ^ = ̂  = 6, »5 = 5, « 6 = / ^ - 1 2 , «7 = 8. (3.7) 

Since it can be readily proved that the sequence {Fh„d} obeys Benford's law (i.e., the events 
"a?|RFN" and "z = d" are independent), by (3.7) we can write 

Prob(/|RFN) = Y ^(^Prob^lRFN) = T l g f ^ - l — 
M. £ i V d )nd 

1 . Xfrf + lY20"* 1 . 210934456
 n c _ 

= WgU[-d-) = 120 l g -^ - QED-
Proposition 8: The probability that a RFN is divisible by its final digit is 

Prob(/|RFN) = ̂ . (3.8) 

The complete proof of Proposition 8 is rather lengthy so, for the sake of brevity, only a par-
tial proof is given. 

Proof: Put 
Z(d) = Prob(y = d, rf|RFN), (3.9) 
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whence 

Prob(;|RFN) = XZ(d)- (31°) 
d=0 

Each Z(d) (0 < d < 9) must be calculated separately. In some cases this calculation is readily 
carried out. For instance, we immediately obtain 

Z(0) = 0, (3.11) 
and 

• Z(d) = E(d) ford = 1,2, and 5. (3.12) 

In some cases the calculation is slightly more complicated. Getting the equality 
Z(9) = 0 (3.13) 

is an example. In some other cases the calculation is rather tedious. Getting the equality 

Z<® = JQ (3-14) 
is an example. Let us prove (3.13) and (3.14) in full detail. 

Proof of (3.13): It is known that Fk = 0 (mod 9) iff k = 0 (mod 12), that is, iff k = Yin (n = 
0, 1, 2, ...). Since I2n is a multiple of 3, Fl2n is even; thus, its last digit cannot be 9. Conse-
quently, if 9|RFN, then j*9 and Z(9) = 0. • 

Proof of (3.14): It is known that 

Fk = 0 (mod8) iff * = 0 (mod 6). (3.15) 

Moreover, by (2.5) and (2.6) we have 

Fk = 8 (mod 10) iff k = 6,24,27, or 33 (mod 60). (3.16) 

For (3.15) and (3.16) to be fulfilled simultaneously, we must have k = 60« + 6 or 60/2 + 24 (n = 0, 
1,2,...). It follows that Z(8) = 2/60 = 1/30. D 

By means of similar arguments, we obtained 

Z(3) = Z(4) = ̂  and Z(6) = Z(7) = - ^ . (3.17) 

Proposition 8 is proved by (3.9)-(3.14) and (3.17). Q.E.D. 

Proposition 9: The probability G(a) that (i, j) = a (1 < a < 9) is: 

1 2243957 1 365273 1 2n5374 

Gf(l) = ̂ l g ± ^ « 0.756, G(2) = ̂ l g ^ - « 0.092, G(3) = ± l g ± | g i - « 0.077, 

± l g ^ ! „ o.023, G(5) = I l g | « 0,016, G(6) = ^ l g | 

G(7) = | l g | « 0.011, G(8) = ̂ l g | * 0.007, G(9) = | l g ^ « 0.009. 
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Proof: By virtue of Proposition 3 we can write 

G(a) = fjB(c) f^Eid). (3.18) 
(d, c)=a 

Then we use (3.18) along with (2.2) and (2.4) to obtain the above results. Q.E.D. 

Let us conclude this section by giving the expected values Vt and Vj of the initial and final 
digitofaRFN. 

Proposition 10: < _ 
r [*} = 14/3 = 4.6. 

The proof of Proposition 10 is left as an exercise for the interested reader. 

4. FURTHER WORK 

The theory developed in this paper also applies mutatis mutandis to recurring sequences 
other than the Fibonacci sequence. For example, considering the Lucas sequence would add 
much to the completeness of our results. Just to taste the flavor, we offer the following to the 
curiosity of the reader. 

The probability A that a RFN and a RLN (Random Lucas Number) have the same final digit 
is 

-4 = 1/9, (4.1) 

whereas the probability B that, once n is randomly chosen within a sufficiently large interval, Fn 
and Ln have the same final digit is 

£ = 1/5. (4.2) 

Question 1: "What is the probability R that a RFN and a RLN have the same initial digit?" 
The answer is: 

9 
R = ]TB2(c)*0165. (4.3) 

Observe that the answer to the following related question is completely different. 

Question 2: "Choose a positive integer n at random within a sufficiently large interval. What 
is the probability S that Fn and Ln have the same initial digit?" 

The answer is: 
S = 0. (4.4) 

In fact, the following curious property can be stated [3]. 

Proposition 11: Fn and Ln cannot have the same initial digit for n > 2. 

Denoting the initial digit of the number x by / (x ) , we can also prove the inequality: 
3<f(F„)+f(Ln)<13 (n>2). (4.5) 
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It. is obvious that the statement of Proposition 11 does not exclude the possibility that the 
initial digits of Fn mdLn have the same parity [i.e., f(Fn) + f(Ln) is even]. The problem of 
determining the probability of this occurrence remains an open problem. A computer experiment 
showed that the event f(Fn) + f{Ln) = 0 (mod 2) occurs 4232 times for 1 < n < 10,000. 

Finally, it can be proved that the probability T that the sum i + / ( R L N ) is even is 

T=U2+(1-U)2* 0.524, (4.6) 
where 

tf = £l*(2c) = l g ^ | . (4.7) 

Because of the numerical value of T ( « 1 / 2 ) , it seems worthwhile to investigate (e.g., by means 
of the autocorrelation-, run-, poker-test, etc.) the statistical properties of the binary sequences 
{(*: + /CRLN))2} for cryptographic purposes (stream ciphering [7]). 

The proofs of (4.1)-(4.3) and (4.5)-(4.7) are left to the perseverance of the reader. 
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