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1. INTRODUCTION 

Recall that the nth roots of unity are the roots of the polynomial xn - 1 . Also, they have a 
geometrical interpretation in terms of the vertices of a regular polygon with n sides inscribed in 
the unit circle. Now consider the polynomial of degree n with the property that each of its roots 
is the sum of an nth root of unity and its square. That is, let U„ denote the set of nth roots of unity 
and consider the polynomial 

What are the coefficients of Pn(x) ? A priori the coefficients are complex numbers. However, we 
will show they are actually integers. In fact, we will prove the unexpected result that the absolute 
value of the coefficient of xk has a combinatorial interpretation in terms of the number of ^-sub-
sets of n objects arranged in a circle with no two selected objects being consecutive. The sum of 
the coefficients is expressed in terms of Lucas numbers. 

2. COMBINATORIAL IDENTITIES 

Before proving the theorem, we will state some known combinatorial identities. We assume 
throughout the paper that n > 0. It is well known that the number of ^-subsets without consecu-
tive elements chosen from n objects arranged in a circle is (see Riordan [3], p. 198) 

n (n-k^ 
n~k{ k 

The generating function of this sequence has the following closed form: 

[f] 

k=0 n-k 

rn-k\ k _(\ + J\ + 4xX , fl-Vl + 4xY' 
2 ) \ 2 

When x = -1 we obtain the following identity [since % (1 + V-3) are sixth roots of unity]: 

f2(-l)" if/i s 0 (mod 3), 

(1) 

SI n (n-k 
k=0 n-k (-1) = 

(-1)' « - i if«#0(mod3). 
(2) 

The following identity will also be used: 

l$(»-*X n*_(-0W+H)["] 

k=0 
(-1> (3) 
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References for these combinatorial identities include Graham, Knuth, & Patashnik [2], pp. 
178-79 and 204, or Riordan [4], pp. 75-77, or Gould [1], Identities 1.64, 1.68, and 1.75. 

3. THE THEOREM 

Theorem: The roots of the polynomial 

[f] 
\n-k\ k 

pn(*)=*«+H)«-£-^":*y (4) 
k=Q' 

are precisely the n complex numbers (not necessarily distinct) of the form C + C2, where £ ranges 
over U„ the 72th roots of unity. That is, 

n(*-(^o)=*"+(-ir-î fVV-
£dJn k=0n K \ * J 

Proof: Let C, denote any nth root of unity. Then x = C + C2 ls a r o o t °f Pn{x) of and only if 

t^fwI*]^+^)*^+^),,+(-l),, = (l+0',+(-l)̂  0) 
*=ow-K k ) 

But (5) follows immediately from (1) since l + 4(^ + ̂ ) = (2^ + l)2 and ^n = 1. Hence, if the n 
complex numbers, C,+t?, are distinct as C, ranges over U„, then all roots of Pn(x) have been 
determined. 

To complete the proof, we will show all the roots are distinct except when n = 0 (mod 3). In 
that case, x = -1 will be a double root. To verify this, first observe that by (2) and (4) x - -1 is a 
root of Pn(x) if and only if n = 0 (mod 3). Now the derivative of P„(x) is 

P;(x) = nx"-l-nJd 
t\n-2-k\ k 

k ' ( ) 
k=0 V 

So x - -1 is a root of P'n{x) if and only if 

llwi~*V1)*=(-ir1- ^ 
k=o\ J 

But, if n = 0 (mod 3), then (7) follows immediately from (3) with n replaced by n-2 and noting 
that [since (-1)"/3 = (-1)"] 

(_ l )M = (-l)J,fa = ( - l ) - i . 

Thus, x = -1 is at least a double root of Pn(x) when n = 0 (mod 3). Finally, we will show x = -l 
is in fact a double root. First, however, a lemma to determine when the sum of two nth roots of 
unity is equal to - 1 . 
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Lemma: Let C,n denote the primitive rfi1 root of unity cos-̂ f + Zsin^f. Suppose 0<j<k<n. 
Then, for somey and k, £J

n + £k
n - -1 if and only if n = 3 j and k = 2j. 

Proof: Ifn = 3/ and Jfc = 2/ , then < ŷ + ^ is a sum of the primitive cube roots of unity and, 
hence, is equal to - 1 . Conversely, suppose the sum of the two nth roots of unity is equal to - 1 . 
Equating real and imaginary parts, we obtain cos~fy' + cos-~k = -1 and sin-^fy + sin^f £ = 0. 
Now solve for cos^fk and sin^-k: 

and 

2n j - 2;r . /ON 

cos—k = - l - c o s — / (8) 
n n 

. 2n , . 2n . / m 
sin — & = - s i n — /. (9) 

n n Next, square both sides of (8) and (9), then add to obtain c o s ^ y j = - y . Similarly, solving the 
original equations for cos^f y'and sin^fy, we obtain cos(^^) = - y . Since 0< j <k <n, we 
must have ^-j-^f- and ^f-k = 4p Hence, n = 3y and 3k~2n. Therefore, n = 3y and k - 2y, 
and the lemma is proved. 

Now we return to the proof of the theorem to determine when the roots of P„(x) will not be 
distinct. Suppose 0 < j < k < n and two roots are the same. Then 

a+ciJ=ck„+C (io) 
Hence, Ci ~ Ck„ = C - ClJ = (Ck„ - OiC + Ci) • So wemusthave 

#+tf = -l. (11) 
Therefore, by the lemma, £J

n and £k
n are the primitive cube roots of unity. Since the square of one 

primitive cube root of unity is the other primitive cube root, the root x = -l will occur exactly 
twice in (^ + C as C, ranges over the nth roots of unity for n = 0 (mod 3). 

\-Ln if n is odd, . 
Corollary: Pn(l) = < where Ln is the nm Lucas number. 

[-L„ + 2 if n is even, 

Proof: It is well known that Z ^ o ^ r * * ) = Ln, where Ln is the nth Lucas number. 
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