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1. MOTIVATION 
Featured in [2] was a pair of generalized functions 

and 

where 

^ _ AK(x){a"(x)-(-i)kp"(x)} 
W" W ~ A(x) 

°W<k)(x) = Ak(x){a"(x) + {-\fp\x)}, 

a(x) = 

P{x). 

p(x) + yjp2(x) + 4q(x) 
2 

p(x)-ylp2(x) + 4g(x) 

giving 

and 

\a(x)+P(x) = p(x), 
\a(x)P{x) = -q(x), 
[a(x) - p(x) = Jp2(x)+4q(x) = A(x). 

Observe that (1.1) and (1.2) lead to 

Hence 

and 

and 

°WiP(x) = Ak(x){l + (-1)*}. 

w<0Kx) = o (&*°>(o) = o) 

°WiS\x) = 2 (°WiS\0) = 2). 

When k = l9 clearly (1.1) and (1.2) in conjunction compress to 

W?\x) = ^{x) = W„(x), 

Generally, 
°W<?(x) = A2(x)W<0\x) = A\x)W„(x). 

Kk\x) = ^-\X). 

(1.1) 

(1.2) 

(1.3) 
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(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 
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Properties of (1.1) and (1.2) were developed in [2] and then related to several special cases 
of pairs of polynomial sequences, and to numerical particularizations of them arising when x = 1 
or x = ~ as appropriate. 

For a partial description, from a different viewpoint, of some of the material in [2], the reader 
is referred to [1]. 

Special cases of (1.1) and (1.2) to which we will refer are [2] by polynomial symbolism and 
name [with corresponding p(x)-value and q(x)-value]: 

(1.12) 

Fn(x): 
Pn(*Y 
J„(x): 
SF„(x): 
U„(x): 
% , ( * ) • • 

Fibonacci 
Pell 
Jacobsthal 
Fermat 
<- Chebyshev -> 
^- Hyperbolic -> 

/^(x): Lucas 
Q£x): Pell-Lucas 
j„(x): Jacobsthal - Lucas 
fn{x)\ Fermat-Lucas 
•Ux) 
•X(x) 

p(x) 
X 
2x 

1 
3x 
2x 
2x 

q{x) 
I 
I 

2x 
-2 
-1 
-1 

For the Chebyshev polynomials, we have x - cos0, whereas in the case of the hyperbolic 
functions we know that x = cosh t. 

Toward the end of [2] it was suggested that one of the many extensions of that research was 
an investigation of the numerical values of (1.1) and (1.2) when k and/or n are negative. 

Here, we propose to examine the general theory of polynomials (1.1) and (1.2) for negative k 
and n. A smooth transition from positive to negative is usually effected. Our endeavors bring 
into being a collection of Theorems A',B',...,F' paralleling those in [2]. Of these, the last 
incorporates the desired synthesis. 

2. NEGATIVE SUBSCRIPTS AND SUPERSCRIPTS 

Negative Subscripts 

After a little calculation using (1.1) and (1.2), we deduce that 

W^\x)^-{-l)\-qrW^k\x) (2.1) 

and 

T^OO = (-l)k(-irW„k\x), (2.2) 
showing the connection between positive and negative subscripts. 

More particularly, when k = 0, 

W_n(x) = -{-qT"W„(x) . (2.3) 

and 

°W_n(x) = (-qr°Wn(x). (2.4) 

Special Cases 
Combining (1.12), (2.1), and (2.2), we derive 
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F«\x) = -(-l)k-F<k\x), 
F±k\x) = -(-lf-"P?\x), 
^ ( x ) = - ( - l )*(-2xr4 k ) (x) , 

g?W (X) = -(-\)k2-"®y (x), 
UM(x) = -(-lfU?\x), 

^(x) = (-lf-"$\x), 
Qik

n\x) = (-l)k-"Q^(x), 

f<?(x) = {-lf2-»f?\x), 
Z<*)(x) = ( - l ) t ^ ( x ) , 

[¥_*>(*) = -(-i)*¥,f>(x), 
Putting A: = 0 in (2.5), we have the standard simplifications [refer to (2.3), (2.4)]. 

Examples 
r , v 4x2+6x + l 1 Tf v 

^ ( * ) = 32X* ^ ( W ^ ' 
F_(

3
2) (x) = x4 + 5x2 + 4 = (x2 + 4)(x2 +1) =' Fj2) (x), 

I$\x) = -64x(x2 - l)2(2x2 -1) = -#3)(x) (x = cosO). 

Differentiation 

As in [2], when k = 0, 
d_w M\-np'{x)W_„{x) forp>(x)*0,q'(x) = 0, 
dx ~"W \-nq'(x)W_„_1(x) forp'(x) = 0, q'(x) * 0, 

where the superscript dash (') denotes differentiation with respect to x. 
Thus, 

d , , . _ d (21x-
fcU{-x)~~dx~{ 8 

= -3.3 i_2x+2) = _33gF_3 ^ 

(2.5) 

(2.6) 

rf . , , d (8x2 + 8x +1)_ -4.2(4x2 + 6x +1) _ ' 
A ^ W - *{ 16x4 J _ 32? " - 4 2 ^W-

Negative Superscripts 

What meaning can be attached to a symbol with a negative superscript? From (1.1), (1.2), 

and 

°W<;k)(x) = A-k(x){a"(x) + (-l)k p\x)} 

(2.7) 

(2.8) 
with obvious extensions when n is replaced by —n (i.e., both subscript and superscript are nega-
tive). Refer back to (2.1), (2.2). 

For instance, 
Pf5Xx) = (4*2 + 2)(4*2 + 4)~3, 
/3

("4)(x) = 9x(3x2 - 2)(9x2 - 8)"2. 
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Some Generalized Products 
Without difficulty, one may establish the following multiplicative identities, which were 

omitted from [2]: 

WJPWWfXx) = A * ( x ) {am+"(x) + (-l)h+k/3m+"(x) 
A2(x) (2.9) 

Wi\x)^\x) = ^^-{am+\x)-{-\rkp^\x) 

+ (-q(x))"[(-l)kam-"(x) - (-l)*/T-"(x)]}, 

°W<^(x)°Wik)(x) = Ah+k(x){am+"(x) + (-l)h+k pm+\x) 
+ {-q{x))\{-\)kam-n{x)H-\fam-n{x)-\}. 

(2.11) 

Various combinations of the above involving ±h,±k,±m,±n might be investigated. For 
example, (2.10) with (1.10) leads to 

wlk\x)W;k\x) = w^-k\x)W^k\x) = w2„(xy (2.12) 
Another pleasing deduction flows from (2.11), namely, 

WZ\x)°W<:P (x) - W*l(x)W;k)(x) = 0 (2.13) 

with a similar conclusion for W%k\x). 
Again, applying (2.9) and (2.11) in tandem, we obtain 

^ W ^ W - A2(x)W<k\x)W£-k)(x) = 4(-l)k(-q(x)Y. (2.14) 

3e BASIC UNIFYING THEOREMS 

Theorems A-F in [2] can now be paralleled. Except that we now use (2.1) and (2.2), of 
course, the proofs follow those in [2]. 

Our homologous theorems will be labeled Theorem A', ..., Theorem F \ Enunciations of 
these theorems are given below. 

Theorem A9: W^k\x)W{kl(x) = W^k\x). 

Theorem B'(a): W^{x^k\{x) + ^ ( x ) ^ ( x ) = 20^>ll )(x). 

If m = n, then Theorem B'(a) reduces to Theorem A'. 
Replacing m by -m, we derive 

Corollary Bf(a): W^k) (x)^(x) + W±k) (x)°W*k\x) = 20**>(x), 

J=2^2fe)(x) ifw = n, 
\ = 0 by (1.5). 
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Theorem B'(b): W^(x)^(x) + A2{x)W^(x)W^(x) = 2°W^,+n){x). 

If m = n, then Theorem B '(b) contracts to a sum of squares on the left-hand side. 
Making the transformation m -> -m gives 

Corollary B'(b): ^ ( x ^ x ) + A2(x)W^\x)W^k„)(x) = 2°W™(x) 

{=2QW{ik\x) if m = n, 
[=4A2*(x) by (1.6). 

Theorem C(a): W%{x)<W™(x)~^(*« (*) = 2 ( - l ) t ( - ? ( x ) r ^ > , 7 ) ( x ) . 

Putting m=n yields the trivial identity 0 = 0, by (1.5). 
Other considerations are: (i) m=-n, (ii) interchange m, n, 

Theorem C(b): W<4> (x)<W«(x) - A2(x)fl**>(x)^>(x) = 2(-l)*(-?(*))""Wlf^ (x). 

Variations: (i) m = n, (ii) m -> -m, (iii) m, n interchanged. 

Theorem D': Jf6k)
+l(x)+$Cx)H*£,(x) = ^ ( x ) . 

Theorem E': ,W(_*„)
+1(x)+?(x)cW(_*„)_1(x) = A2{x)W^>(x). 

Illustrations 

(A* 9% (x)/g>(x) = ~3 j c ( 9 y 2"8 ) ( 9 x 2~4 ) = 3 ^ (x). 
16 

(B'(a)): F(2)(x)Z^(x)+F^>(x)lP:}(x) = 2(x2 + l)(x2 + 4)2 = 2^3
4)(x). 

(B '(b)): fi<?(x)g<?(x) + 4(x2 + l)P^{x)P^{x) = -16x(x2 + l)(4x2 + 3) = 2g^2)(x). 

(C'(a)): UV(x)T$(x) - U^(x)T^(x) = -8(x2 -1) = -2U[2\x). 

(C'(b)): T(i)
1(x)T«(x)-4(x2 - l )¥ j | ( x )¥^ (x ) = -16x(x2 -1) = -2T(2)(x). 

(py. S?(_3
1

)(x)-2^(x) = -—(9x-8 ) 2 =/i2
3)(x). 

(E* /4
2>(x) + 2x/44>(x) = <2x + 1Xf + 1>3 =(8x-fl)jff(x). 

oX 

In(C'(a))? x = cos#(*l). 
In(C'(b)Xx = coshr(^l). 

4. SYNTHESIS 

Elementary algebraic calculations in (1.1), (1.2) when m and n are positive or negative allows 
us to assert the following synopsis of the relationships connecting Wf®(x) and °W^\x). 
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Theorem Ff: For all integers m and n, 

[W^2m\x) = T V ^ C x ) = A2m(x)W„(xl 

\°W<^\x) = W^2m+l\x) = A2w(x)°lfw(x). 

Examples 
Ff(x) = I%(x) = (x2+4)\x2 + l), 

jt*\x) = 4~3\x) = (8^2 + 8* + l)(8x +1)"2, 

f¥\x) =g^> (x) = _ (9* 2 -2 ) (9* 2 -8 ) - \ 

£4~3)(x) = t£2 )(x) = -x(2x2 - X)(x2 -1)"1. 

This synthesis extends and complements that presented in [2]. 

Numerical Specializations 

Throughout this paper it is useful to make appropriate numerical substitutions in theory. So, 

Ff(l) = I?l(l) = 250, 

/r>(i)=^o)=!p 

^ = 

5. A CONCLUDING MISCELLANY 

Simson Formulas 
Analogs of Simson's formula are readily established by means of (1.1), (1.2) for k >0, with 

immediaite extension when k—>-k: 

W<tl(x)^(x)-{W<k\x)}2=(-l)k+\-q(x)y-lA2k(x), (5.1) 

and 
W&ixyUft&ix) - {W<*>(*)>2 = (-Ifi-qix))"-1 A2k+\x). (5.2) 

Similar results apply when n^>-n. 
Variations of these orthodox Simson formulas (Simsonic variations!) include the "inverted" 

Simson formulas 

W^k+l\x)W^k-l\x) - {W}k\x)}2 = 4(-lf(-q(x)yA2k-2(xl (5.3) 

and 
^+l\x)^-l\x) - {WPix)}2 = 4(-l)k+l(-q(x))"A2k(x) (5.4) 

in which the roles of subscript and superscript in (5.1) and (5.2) have been reversed. 
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Hybrid Results 
Use of (1.1), (1.2) produces the "hybrid Simson formulas" 

^wiei-A^w^wfH-^'whwr'^'w, (5.5) 
and 

A-^x^^W^iW" {W^k\x)f = {-lfp\x){-q{x)y-l£k-\x). (5.6) 
Clearly, 

(5.5) + (5.6) = 0 (0. 

This is also confirmed by looking at 

(5.1) + A"2(5.2) = 0 (//), 

since the left-hand sides of (i), (ii) are merely re-arrangements of each other. 
Further formulas arise when k^-k and/or n->-n. 
Searching for new results involving the data in this paper is an extremely pleasurable activity. 

Readers may wish to reflect on some of the possibilities. 
Surveying the material in this paper and in [2], one is left wondering whether there may be 

other sets of polynomial-pairs whose major properties may be assembled by means of a synthesis 
of some kind. 
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