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1. INTRODUCTION 

The results of this paper assume a familiarity with linear algebra. A good reference for the 
results assumed here is [1]. 

As is well known, the Fibonacci numbers may be generated in the following manner. Let 
A^H Then 

If we diaigonalize A as 

A = BDB r-l Y -\IY 
1 1 

_ 1+V5 where y = -̂ y2- is the golden ratio, then from 

Fu h+\ = Ah 

1 h+l 

Y 0 
o -\iy 

= BlfB'1 

Y -II Y 
1 1 

one obtains the formula 

F_rh-(-i/r)h 
(i.i) 

More generally, if f(x) = xm - Six"1-1 sm is a polynomial with distinct roots a,, and C is 
the companion matrix of f(x), 

C = 

5, ^ 
1 0 

6 6 

Sm-l Sm 
0 0 

1 0 

then v̂  = Chv0 generates the recurrence sequence with initial values given by v0 and recurrence 
polynomial f(x). Again, we can diagonalize C = BDB~l and obtain the formula 

a* = Z4«?> 0-2) 
for some Ai eC. 

In fact, there is nothing special about companion matrices here. If M is any square matrix 
over Z (say) and vh - Mhv0, then, as we shall prove in the next section, each component of vh is a 
recurrence sequence with recurrence polynomial equal to the characteristic polynomial of M. 
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Now let us examine some generalizations of the relation above for the Fibonacci numbers. 
One way to generalize the matrix A above is to the binomial matrix. For example, consider 

A = 
"1 2 1 
1 1 0 
1 0 0 

; vo = 
I 
0 
0 

By following the above method, we find that the characteristic polynomial of A3 is x3-2x2-
2x +1; the eigenvalues of A3 are 1/y2, - 1 , y2\ and 

4\> = 
F2 

rh+l 

FhFh+l 

(1.3) 

We prove in this article a generalization of this observation. We find that the eigenvalues of the 
n-hy-n binomial matrix are powers of the golden ratio. As a consequence, we shall derive the 
generalization of (1.3) above. Moreover, we show how explicitly to diagonalize this binomial 
matrix, and we give recurrence relations for the characteristic polynomials. 

More precisely, let y = ̂ - be the golden ratio. Let A„ = [ a u ] be the "inverted" (or upside-
down) binomial matrix (Pascal's triangle): 

ifi+j>n + l9 
*ij = < 

("4/ otherwise. 

Let Wn = {yn~ ( - l / r ) 7 W a n d I e t Qn(x) = Uw4vn(x-w). Let Dn be the diagonal matrix whose 
diagonal entries are the elements of Wn listed in decreasing order according to size of the absolute 
value. Let En be the eigenvector matrix of An with column vectors listed in decreasing order of 
absolute value of the corresponding eigenvalues, and with its columns scaled so that the bottom 
row is all l's. So, for example, for n - 5 we have 

A = 
1 4 6 4 1" 
1 3 3 1 0 
1 2 1 0 0 
1 1 0 0 0 
1 0 0 0 0 

r 4 .2 

E5 = 

y -r 
y3 -y~ll<\ 
y2 yll 
y y3/4 
1 ] ( 

A = 
r4 

0 
0 
0 
0 

l 
-1/2 
-1/6 
1/2 

1 

0 0 
-y2 0 

0 1 
0 0 
0 0 

-2 
-y 
y/4 

-y~ll2 
-y~3/4 

1 

0 
0 
0 

-y'2 

0 

-4 
y 
-y'3 

y~2 

~y~x 

i 

0 
0 
0 
0 

y~4 

The main result follows. 
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Theorem 1.4: The eigenvalues of 4 are exactly the set of values in Wn9 so that the characteristic 
polynomial of 4 is Qn(x). Moreover, an explicit recursive method can be given for generating 
En and E~l so that we can diagonalize 4 explicitly as 

E^AriEn = D„. 

In addition, the coefficients of the characteristic polynomial of 4 c a n be generated recursively. 

In Section 2 we present some background on recurrence sequences and derive a simple self-
contained proof of the first statement (Theorem 2.8). In Section 3 we give recurrence relations 
for the characteristic polynomial array (Definition 3.4, Proposition 3.5, and Corollary 3.11) and in 
Section 4 we give an explicit diagonalization of 4 (Theorem 4.3). As a consequence, we obtain 
a second proof that the characteristic polynomial of 4 ls Qn(x) • ^n Section 5 we give a generali-
zation (Theorem 5.10). This approach demonstrates the explicit recursive method (Corollaries 
5.8 and 5.9) for generating the eigenvector matrices. As a consequence of this approach, we 
obtain a third proof that the characteristic polynomial of 4 'ls Qn(x)- However, slightly more 
algebra is required for this approach. 

The first proof is based on elementary facts from vector recurrences, for which we provide a 
quick review. We give an overview of the second proof. We define recursively an array of num-
bers bn^m (Definition 3.4). From the 77th row of this array of numbers bn^m, we form a polynomial 
Pn(x). We show inductively that the roots of P„(x) form the set Wn, whence Pn(x) = Qn(x). 
Finally, we demonstrate that the companion matrix of Pn(x) is similar to 4 ' giving ou r result, 
since similar matrices have the same eigenvalues. The similarity computation requires the auxil-
iary matrices that we define in Section 4. 

29 REVIEW OF RECURRENCE SEQUENCES 

We present a review of recurrence sequences and, as a consequence, obtain a quick proof of 
the first statement of Theorem 1.4. Moreover, we find an interesting characterization of recur-
rence sequences generated by Qn(X) (Theorem 2.8) using some of the results developed in later 
sections. See [3] for generalities regarding recurrence sequences. 

Definition 2.1: A sequence (ah) satisfying a linear recursion 
n 

ah = YjSkah-k 
k=l 

is called a (linear) recurrence sequence. We call the polynomial xn - Z£=1 skxn~k the recurrence 
polynomial for (ah), and we say it generates (ah). We call (ah) degenerate if it is also generated 
by a polynomial of smaller degree. 

If f(x) has m roots ak, then, as in (1.2), it is easy to show that 
m 

ah = ^Ak(h)ah
k, (2.2) 

k=l 

where the Ak(h) is a polynomial whose degree is the multiplicity of ak in f(x). Moreover, any 
such generalized power sum is a recurrence sequence with recurrence polynomial f(x). Hence, it 
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follows that the set of all recurrence sequences with recurrence polynomial f(x) is a vector space 
of dimensions. 

We shall make use of the following proposition in Section 4 below. 

Proposition 2.3: Let xh be a recurrence sequence of degree s with recurrence polynomial p(x) = 
njUi(x- ak) wfrh the ai distinct and let yh be a recurrence sequence of degree t with recurrence 
polynomial q(x) = Ylt

i=l(x-]3£) with the pt distinct. Let Whe the distinct set of numbers of the 
form akpe with w =\JV\. Then the sequence xhyh is a recurrence sequence of degree w with 
recurrence polynomial Tlx&r(x - X). 

Proof: The vector space of sequences with recurrence polynomial p(x) is spanned by the 
sequences a\ for k - 1,..., s. Thus, we can write xh = E£=1

 w*a? f°r s o m e % • Similarly, we can 
write yh = S^=i v̂ /?J for some v̂ . Multiplying yields 

xhyh = T.ukvAakPi)h-

Thus, x ^ is in the span of the sequences ?t for X eW and, hence, has recurrence polynomial as 
above. D 

It is easy to characterize the space of sequences generated by a polynomial. 

Proposition 2.4: The sequence (ah) is a nondegenerate recurrence sequence generated by f{x) 
of degree n, if and only if the matrix 

A = 
An-\ 

a, 

A2n-l 

a 2n-2 

a, at n-\ 

is invertible. In this case, the n sequences {cth+k)n
k^ generate the space of recurrence sequences 

generated by f(x). 

Proof: If A had a nontrivial element in its kernel, then so would 

ChA = 
*h+n-l Ah+n a, 
Ah+n-2 "h+n-1 au 

ah 
Ah+l 

h+2n-l 
2h+2n-2 

Ah+n-l 

where C is the companion matrix for f(x). This is true if and only if (ah) is a degenerate recur-
rence sequence. D 

Next, we consider recurrence sequences that arise from matrices. This generalization is quite 
simple. 

Definition 2.5: Let M be an n-by-n matrix and let v0 be an ^-dimensional column vector. The 
sequence of vectors (vh) defined by vh - Mhv0 is called a vector recurrence sequence. 
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If Mis the companion matrix for f(x), 

M = C = 

Sl h '" Sm-\ Sm 
1 0 ••• 0 0 

0 0 ••• 1 0 

then our situation is closely related to recurrence sequences. Let 
an-\ 

and let (ah) be the corresponding recurrence sequences generated by f(x). Then 

v» = C \ 

Even in a more general case, this picture is only altered with a change of basis. 

Proposition 2.6: Let Mbe an n-by-n matrix with characteristic polynomial f(x). Suppose fur-
ther that f(x) is actually the minimal polynomial of M, so that we have the similarity relation 
M-BCB~l, where C is the companion matrix of f(x). Let (yh) be the vector recurrence 
sequence generated by M with initial value v0. Then the Ith component of (yh) forms a recurrence 
sequence (Vh) with recurrence polynomial f(x). Moreover, the recurrence sequence generated 
by f(x) with initial values given by B~\ is nondegenerate if and only if the ^-by- î matrix 
[v0 ••• vw_J is invertible. Hence, in this case, the (Vw) form a basis of the space of recurrence 
sequences generated by f(x). 

Remark: The condition that f(x) is the minimal polynomial of M is not necessary; however, 
the statement becomes more complicated and the conclusion weaker. 

Proof: Using the similarity relation, we find that 

C-[(B-\) ... (Br\^)] = [(BT\) - (B-\j\. 

Thus, (B~\) is a vector recurrence sequence for the matrix C. In other words, 

B-\v0 - vn-l]=A-
a 2«- l 

a '2n-2 

a„. 

where (ah) is a recurrence sequence generated by f(x). Thus, 

M\=BCn(B-%) = B 
at n+h-l 

This implies that the Ith component (Vh) is a linear combination of recurrence sequences generated 
by f(x); hence, (vj,) itself is generated by f(x). 
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The last statement then follows by applying Proposition 2.4 to A-B l[v0 ••• vw_J, and 
noting that B is invertible. • 

We apply the above development to our binomial matrices. We shall consider the sequences 
(Fh+iH~l) for 1 < / < « as column vectors for fixed h. 

Proposition 2.7: For all h > 0, An[Fh
n;{F^'1] = [FJ^Ffcl]. In other words, (F^lf1) is a recur-

rence sequence generated by the characteristic polynomial of An for all /', \<i<n. 

Proof: This follows trivially by induction. One must only check the top entry, which follows 
from the relation 

£(«:!>. •jFr={Fh+l+Fh)"-l = F£. U 

Now we use (1.1): 
(..h+l l i / . A f t + l Y " ' / ' . . * / ^/..\h\'~l 

T?n-i 771-I _ 
Ph+lFh ~ rn+-(-i/r) 

V5 = I, Ay. 
weWn 

Thus, by (2.2), the polynomial Qn{x) - n w ^ (x-w) generates each of the sequences (F/^F^1). 
Clearly, if we can show that (F^F^1) is nondegenerate of degree n, then we must have 

char poly(4) = &(*). 

Theorem 2.8: The eigenvalues of An are Wn\ hence, the characteristic polynomial of An is Qn{x). 
Moreover, the sequences (F^F^1)"^ ^orm a basis for the space of recurrence sequences gen-
erated by Qn(x). 

Proof: In light of the above, it only remains to show that the matrix [F?~{JFJ~l] is invertible. 
If we scale the 7th column by dividing by FJ^1, then we obtain the Vanderaionde matrix 
[(Fj I F-+iy~l], and as is well known, this determinant is nonzero. D 

3. THE CHARACTERISTIC POLYNOMIAL 

We set out some well-known (and easily proved) facts about the Fibonacci and Lucas num-
bers to refer to later. 

r^h±M_ (3J) 

y-h = {-lf^f^. (3.2) 
FhLk+FkLh = 2Fh+k. (3.3) 

We shall see that the following array of numbers gives the coefficients of the characteristic 
polynomial of An. 

Definition 3.4: Define the array of numbers bn m for n, m > 0 as follows. Let bn0 = l for all 
n > 0 and let bn m = 0 for m > n. For 0<m<n,we define bn m recursively by 
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t>„ m = K, — ,, —?L(—X\m 
yn,m ^77-1,771-1 77 V V Fm 

Proposition 3.5: For m<n,we have 

\bn,m\ = 
77 77 Z7 

— » 77-I ' * * *n-m+l 

Fm-Fx 

Moreover, \bnm\= \hnn_m|, and we have the relation 

F 
Dn,m -°n,m-l 77 V V • 

The proof is obvious. The first several rows of the hnm array are given in Table 3.6, where n 
indexes the rows and m indexes the columns. 

TABLE 3A Coefficients of the Characteristic Polynomial 

0 
1 
2 
3 
4 
5 
6 
7 
8 

0 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
0 
-1 
-1 
-2 
-3 
-5 
-8 
-13 
-21 

2 
0 
0 
-1 
-2 
-6 
-15 
-40 
-104 
-273 

3 
0 
0 
0 
1 
3 
15 
60 
260 
1092 

4 
0 
0 
0 
0 
1 
5 
40 
260 
1820 

5 
0 
0 
0 
0 
0 
-1 
-8 

-104 
-1092 

6 
0 
0 
0 
0 
0 
0 
-1 
-13 
-273 

7 
0 
0 
0 
0 
0 
0 
0 
1 

21 

8 
0 
0 
0 
0 
0 
0 
0 
0 
1 

Definition 3.7: Let P„{x) = lL''j=0bn„_jXJ. The first few Pn(x) (which can be read from Table 
3.6) and W„ (defined in Section 1) are: 

Pl(x) = x-l 0i = {1} 
P2(x) = x2-x-l W2 = {y,-y-1} 
P3(x) = x3-2x2-2x + l W3 = {y2,-l,y-2} 
P4(x) = x4-3x3-6x2+3x + l W4 = {y3,-y,y-l,-y-3} 

We note that the (n-1) column of the b„ m array is just the coefficients of tfie formal power 
series (-1)" / P„((-l)"_1x). This is equivalent to 

k=Q 

for all j > n-1. Although we do not use this fact here, we record it as Corollary 3.11 to Theo-
rem 3.8. 

Theorem 3.8: The set of roots of the polynomial Pn(x) is exactly Wn\ Pn(x) - Qn{x). 

Proof: We use induction. Since W„ = (-l/y)Wn_l u {yn~1}, we have the relation 

(-y) 
(3.9) 
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w-1 

We rewrite this as 

&(*>=(x+c-irc-rroi^-M-wC-rr^1^ 
= x»+(-1)" W i + Z [Vi ,»- ; ( - r ) ; - "+(- i ) w ^- i , w - w ( - ry]^-

Thus, we need to show the relation 

Kn-j =b„-i, n-J(-ry-"H-n-i,n-l-J(-yy. 

By equations (3.1) and (3.2), this can be written as 

2 

(3.10) 

"«, w-y "w-1, n-y" 

By Proposition 3.5, this becomes 

Kn-j = (-lT+Jb
n-l,n-j-l\ 

By equation (3.3) above, this simplifies to 

+ ( - i r W / J ^ ^ 

«-y 

Vj-^lV^ +-

2F„_j 

which follows from Definition 3.4. D 

Corollary 3.11: The (w-1) column of the array bnm forms the coefficients of the formal power 
series (-1)" / Pn((-l)n~lx). More precisely, we have 

(-i)" 

Proof: Repeated application of (3.10) gives the following: 

n-m+l 

k=\ 

By changing the order of summation and relabeling the indices, this is equivalent to 

But this just expresses the power series identity 
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!>**-,.„_,**=(-irfXw^o*)'J i f ^ p V 
Jt=0 V*=o 

(3.12) 

Now, applying induction, the inverse of the right-hand side of (3.12) is just 

nrf'fp*) 
Substituting y = (-1)" x, we have 

{-YT1 i-rJ 
-^-^((-irvxc-ir^-r"-1). 

^^-iC-^Cy-r"- 1) = (-i)"PM, 

by (3.9) and Theorem 3.8. Thus, as required, the left-hand side of (3.12) is 

4. EXPLICIT DIAGONALIZATION 

We define the following integral matrices that will be used to diagonalize 4? m Theorem 4.3 
explicitly. 

Definition 4.1: Let n > 1. Let Cn be the companion matrix for Pn(x\ Cn = [ctJ], where 

<V+1 = 1 

w,y "~ un,n+l-j 

K=° 
for i = l,...,w-l, 
for/ = l,...,«, 
otherwise. 

Let Ĵ , = fy], where i;y - ^ F £ F £ . Let Mw = [i^], where ^ ^ I ^ i T ' -
Observe that the Ith row of R„ gives the terms in (Fi_2 + Fi_^"~l a nd that the Ith row of Mn 

gives the terms in {Ft_x + i^)"_1. These matrices will be used in Theorem 4.3 to prove that A„ is 
similar to C„. The matrix J^ arose originally by observing the relation RnEn = Vn (see Definition 
4.2). From here, it is natural to bring in the companion matrix C„, since Vn is*the eigenvector 
matrix for Cn. 

We illustrate Definition 4.1 for n = 5: 

c,= 
r° 0 
0 
0 
1 

1 
0 
0 
0 

-5 

0 0 Ol 
1 0 0 
0 1 0 
0 0 1 

-15 15 5_ 

M5 = 

1 
1 

16 
81 

625 

? 

0 
4 

32 
216 

1500 

^ = 

r o o 0 
1 0 0 
1 4 6 

16 32 24 
81 216 216 

0 0 0" 
6 4 1 

24 8 1 
216 96 16 

1350 540 81 

0 
0 
4 
8 

96 

f 
0 
1 
1 

16 
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Definition 4.2: For each n > 1, let Vn be the Vandermonde matrix which is the eigenvector matrix 
for Cn with eigenvectors listed in decreasing order of the absolute values of the corresponding 
eigenvalues. 

Thus, for example, we have 

" 1 
. 4 
Y . 8 
Y 
. 12 
Y 
. 16 
Y 

1 ] 
. 2 1 

-Y 5 
. 4 1 
Y I 

- 6 1 

-r ] 
. 8 1 
Y 

I 1 
. , - 2 

I -y 
. - 4 

[ y 
. - 6 

I -y 
„ - 8 

[ y 

1 
. , - 4 
Y „ - 8 

r . -12 
Y 
. -16 
P . 

Theorem 4.3: For all n, we have the relation Mn - Q i ^ = i ^ 4 - Moreover, Pn(x) is the char-
acteristic polynomial of A„, i^ is invertible, and the eigenvector matrix of A^ is given by 

Proof: Multiplying the first n -1 rows of Cn by Rn clearly gives the first n -1 rows of Mw. 
For the last row, for each/, 1 < j < n, we must show the relation 

E-w^^^r- (4.4) 
Now P2(x) is the recurrence polynomial for the sequence Fk (and, hence, for Fk_{). Thus, using 
the fact that WUWV = WU+V_ly we can apply Proposition 2.3 repeatedly to find that Pm(x) is the 
recurrence polynomial for the sequence whose /1th entry is a product of m - 1 factors, each chosen 
from the set {Fh,Fh_1}. In other words, Pm(x) is the recurrence polynomial for the sequence 
Fh~\P'hl~J for any j , \<j<m. Explicitly, this means that 

m 

Z -h FJ~l Fm~J - FJ~lFm~J 
um, m+l-k-Lr+k-m-l1 r+k-m-l ~~ J r - 1 •*• r 

Equation (4.4) now follows, since it is just this same recurrence relation for m = n at the r = n 
term. This proves Mn - CJ^. 

To prove Mn - RnAn it is equivalent to show that, for all i, j with 1 < 1, j < n, we have 

Combining the binomials and dividing by F/__1l, this is equivalent to showing 

fc=(A s 

But, by the binomial theorem, this is just (Ft_2 +Fi_l)n~J = F"~J', which is just the Fibonacci recur-
sion. This proves that CnR„ = RnAn. 

The fact that R„ is invertible was actually proved previously in the proof of Theorem 2.8; 
again, we can scale Rn to obtain a Vandermonde matrix which has a nonzero determinant. Hence, 
Cn and 4 , satisfy the similarity relation An=P^lCnRn. Thus, they have the same characteristic 
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polynomial P„(x). Since Vn is the eigenvector matrix for C„9 the similarity relation shows that 
R^Vn is the eigenvector matrix for An. Q 

5, A GENERALIZATION 

In this section we give an alternative development of Theorem 1.4. As a result, we obtain a 
recursive method of generating the eigenvector matrix. Moreover, we find a nice explanation for 
the eigenvalue behavior. Our methods yield the following generalization: if any matrix is gener-
ated in the same way as the A^, then it must be essentially binomial. 

l:bA Define an n-by-n matrix S„(B) as follows: Definition 5.1: Let B be a 2-by-2 matrix, B = [a
c 

the 7th entry of the 7th row of Sn(B) is given by 

S„(B)(iJ) = the coefficient of xn-jyj~l in (ax + byy-'icx + dyj-1. 

Then, for A = A^ - [} J], by the binomial theorem we have An = Sn(A). For general B as in 
Definition 5.1, we let Bn = Sn(B). Thus, we have 

B2 = B = a 
( 2 
1 a B3 = 

lab b2} 
ac ad + be bd 
-2 led d2 

V 

V 
B4 = 

3 \ 3a2b 3ab2 b 
a2c 2abc + a2d 2abd + b2c b2d 

2 2acd + bc2 2bcd + ad2 bd2 
ac 

V 3c2d 3cd2 
J 

Lemma 5.2: Let B = B2 be a 2-by-2 matrix, B = {a
c
b
d) and let B„ = S„(B). Then B„ may be 

generated recursively from Bn_x by 

B„(i, j) = bBn_x(i, j-\) + aB„_x{h j), 

with the convention that Bn(i, j) = 0 forj < 1 orj > n. 

Proof: Induction on n. D 

In order to prove the next lemmas, we need to define some notation. 

Definition 53: Let R = C[x, y] be the ring over C in two indeterminates. Define Vn to be the 
C-vector space of homogeneous polynomials in R of degree n-\. A basis for Vn is {x""1, xn~2y, 
...,y"~1}, so Vn is of dimension n. Any 2-by-2 matrix 5 = [^] induces a ring homomorphism, 
$B:R->R9by sending x to ax + by and sending y to ex + dy. Since <j)B is degree-preserving and 
linear in x andj, it induces a linear transformation on Vn. We denote this linear transformation by 
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Lemma 5.4: If we write an element Vn as a row vector with respect to the basis {xn~l, xn~2y, 
•••> y"~1}, then the action of </>Bri on Vn is given by multiplication by Sn(B) on the right. 

Proof: The Ith basis vector of Vn, namely, the vector x""'/"1, goes to (ax + by)n~1(cx+dy)1~~l 

under the linear transformation </>Bt n, which just forms the 7th row of Sn(B). D 

Lemma 5.5: Let B and C be 2-by-2 matrices. TheniSlf(J?C) = iSII(J?)iS„(C). 
Proof: The matrix equation J?C = BC gives rise to the ring homomorphism equation (/>BC = 

0c ° 0B (n°te that the matrices act on the right; hence, </>B is applied first). Since the ring homo-
morphisms act the same on Vn9 we obtain the equality of linear transformations <j>Bc,n ~ 0c,n0B,n-
Now, by Lemma 5.4, we obtain Sn(BC) = $n(B)S„(C) D 

Theorem 5.6: Let G„ = S„(E2), where E2 =f[ ~\r] is the eigenvector matrix for A2. Then 

AnGn = GnD„. 

Hence, G„ is the eigenvector matrix for 4* (scaled so that the bottom row of Gn is the top row of 
4f) and Dn is the diagonalization of 4*? giving the eigenvalues of 4? to be (-i)»-*y2-/1+1 a s / 
ranges from 0 to /? - 1 . 

Proof: As we have observed after Definition 5.1, we have 

4(40 = 4,. (5.7) 
If we start with the matrix equation A2E2 = E2J\ and apply the operator S„9 then, from Lemma 
5.5 and equation (5.7), we obtain 

A„S„(E2) = S„(E2)S„(D2). 

The action o f A o n ^ sends x to yx andj to -y~ly. Therefore, Sn(Dz) sends x'<yw~1~/ to 
(-l)w"1~i^2z~n+1xz>'w"1~/, which is exactly the action of Dn. Thus, Dn - Sn(D2) and, consequently, 
Sn(E2) must be the eigenvector matrix. This gives the result. D 

Remark: These results can be interpreted in terms of the symmetric algebra of C2
? denoted 

Sym C2 (see [2], p. 141). If eY and e2 are a basis for C2, the ring R above is isomorphic to the 
symmetric algebra of C2 by sending x to ex and y to e2. The set of homogeneous polynomials of 
degree n of R is just the (n- l)-fold symmetric tensor product of C2

? denoted Sym^C2. As we 
have observed above, the linear transform A2 acting on C2 induces an action on Sym C2. 

Lemma 5.2 gives an explicit means for computing the eigenvector matrix. Since Gn = Sn(E2), 
we have the following recursive method for computing the eigenvector matrix. 

Corollary S. 8: G,(i, j) = -1 /*?_,((, j-t) +rG,-,(', A 

Similarly, we can compute the inverse of the eigenvalue matrix so that the explicit diagonali-
zation of An can be given. We have 
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Hn —Gn = V5[ 
\ly~ 
r 

Thus, since H„ = Gn
1 = S„(G2

 l), we obtain the following result from Lemma 5.2. 

Corollary 5.9: H„(i, j) = -j-[l /jŜ ff, j-\)+Bn_x{h j)l 

We note that the proof of Theorem 5.6 actually shows the following generalization. 

Theorem SAO: Let B be a 2-by-2 matrix with distinct nonzero eigenvalues a and a". Then 
eigenvalues of Sn(B) are a^n"^a^l~l\ where i ranges from 1 to n. Moreover, if £ is the eigen-
vector matrix for B, then the eigenvector matrix for Sn(E) is Sn(E). 

However, we also note that if the set of matrices Sn(B) comes from a single array of num-
bers as the inverted binomial matrices (the AJ do, then the array of numbers must be essentially 
binomial. 

Theorem 5.11: Let B be a 2-by-2 matrix. Suppose that the entries of the* matrix Sn(B) come 
from a single array of numbers for each n > 1. Then B must be of the form [* J]. In this case, the 
entries of the Ith row of Sn(B) are just the coefficients of (ax + by)"'1. 

Proof: Assume B = [a
c
 b
d\. Then 

h2~ 

S3(B) = 
a1 lab b 
ac ad + be bd 
c2 led d2 

so that we must have c2 = c, led = d,ac = a,ad + bc = b. These imply that c = 1 and </ = 0. Then 
the entries of the Ith row of 5„(JB) are the coefficients of (ax + by)n~l and, hence, just the binomial 
matrix scaled by powers of a and ft. D 
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