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1. INTRODUCTION

In this paper we define the Brahmagupta matrix [see (1), below] and show that it generates a
class of homogeneous polynomials x, and y, in x and y satisfying a host of relations; the poly-
nomials contain as special cases the well-known Fibonacci, Lucas, and Pell sequences, and the
sequences observed by Entringer and Slater [1], while they were investigating the problem of
information dissemination through telegraphs; x, and y, also include the Fibonacci polynomials,
the Pell and Pell-Lucas polynomials [5], [7], and the Morgan-Voyce polynomials in Ladder
Networks and in Electric Line Theory [6], [9]. We also extend some series and convolution
properties that hold for the Fibonacci and Lucas sequences and the Pell and Pell-Lucas polyno-
mials to x, and y, [7], [5].

2. THE BRAHMAGUPTA MATRIX

To solve the indeterminate equation x* = #y* +m in integers, where 7 is square free, the Indian
astronomer and mathematician Brahmagupta (ca. 598) gave an iterative method of deriving
new solutions from the known ones by his samasa-bhavana, the principle of composition: If
(x;, »,m) and (x,,y,,m,) are trial solutions of the indeterminate equation, then the triple
(%, £0y,, Xy, £ ¥y, mm,) is also a solution of the indeterminate equation which can be
expressed using the multiplication rule for a 2 by 2 matrix. Notice that if we set

| x Y
Ben=| g 2] M)
and m = det B, then the results
B(xy, »1))B(x,, y;) = B(xyx, £1y,y,, %1y, £ y1%5), @)
det[B(x,, y,)B(x,, y,)] = det B(x,, y;)det B(x,, y,) = mm,, 3)

give the Brahmagupta rule. Equatioa (3) is usually referred to as the Brahmagupta Identity and
appears often in the history of number theory [10].
Let M denote the set of matrices of the form

_|x Y
5[y 7] @
where ¢ is a fixed real number and x and y are variables. Define B to be the Brahmagupta matrix.
M satisfies the following properties:

1. M is a field for x, y,7# €R and ¢ <O0; in particular, if #=-1, then we have the well-known
one-to-one correspondence between the set of matrices and the complex numbers x +iy :

X y .
= oren
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2. The following eigenrelations, in which 7" denotes the transpose, hold:
B[1,+t]" = (et pd0)[1, 22T,
and these relations imply

B[, £41] = (x £ yJ1)[1, £

MR e

B,,:[x y]":[xn yn]an.
t.)} X toyﬂ xﬂ

3. Then the following recurrence relations are satisfied:

xn+1:xxn+lyyn’ yn+1:xyn+yxn’ (5)

and

N

Define

with x, =xandy,=y.

4. Using the above eigenrelations, we derive the following Binet forms for x, and y,,:

%, = %[(Hy«/?)" +(x-yVt)], ©)
=g LG+ ey = (o= Y, Y

and x, +/1y, = (x £4/1y)".

5. Let 5,, =X, +yn‘/l_‘> nn_yn"/;’ and )Bn = xrf —ty:’ with M=, gn = ga and an = IB, we then
have &, =¢&", n,=7", and B,=". To show the last equality, consider f" = - =
&t =En, = (x2-1?) = B,. Notice that = det B.

6. The recurrence relations (5) also imply that x, and y, satisfy the difference equations:

X1 :Zxxn_ﬂxn—-b Vi1 :zxyn_ﬁyn—l' (8)
Conversely, if x, =1, x; = x, and y, =0, ), =y, then the solutions of the difference equations
(8) are indeed given by the Binet forms (6) and (7).

7. Notice that if we set x=1/2=yand¢=5, then f=-1 and 2y,=F, is the Fibonacci
sequence, while 2x, = L, is the Lucas sequence, where n>0. For the number-theoretic
properties of F, and L,, the reader is referred to [2] and [3].

8. In particular, if x=y =1 and ¢ = 2, then both x, and y, satisfy x> —2y? = (~1)" and they gen-
erate the Pell sequences:

x,=113,7,17,41,99,239,577,..., y,=0,1,2,5,12,29,70,169, 408, ....
It is interesting to note that if we set

a=2(x,+y,)y, b=x,(x,+2y,), c=x>+2xy, +2y7,
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we then obtain integral solutions of the Pythagorean relation a* +5* = ¢*, where a and b are
consecutive integers [8].

. Ift=1, then x,+y, =(x+»)", and if # = -1, then x, +iy, = (x +iy)". Also, for every square

free integer 7, the set of matrices M is isomorphic to the set {x+y/7|x, y €Z}, where Z is
the set of integers.

§+ n (o5 _on
sl ere @ =eh , dete® =e*.
4{J1(ef-e™) et +e”

To show these results, let us write 2x, = Eant, 24t ¥, =& —n*. Since

eBzwl!i and B—k=i[xk yk],
& 0ok, x,

we express x; and y, in terms of £ and 7 and obtain the desired results.

—n
n

x, and y, can be extended to negative integers by defining x_, =x,6" and y_, =-J,

We will then have
B {x y] :[x.n y_n}:B_n;
y x by, x,

here we have used the property

[ TG 2+ 7

All the recurrence relations extend to the negative integers, also. Notice that B® =1, the
identity matrix.
3. THE BRAHMAGUPTA POLYNOMIALS

Using the Binet forms (6) and (7), we can deduce a number of results. Write x, and y, as
polynomials in x and y using the binomial expansion:

x,=x"+ t(g) x"2y? +t2(2)x"‘4y4 4oy
y,=m""y+ t(?) xX"3y + tz(g)x”‘sy5 o
Notice that x, and y, are homogeneous in x and y. The first few polynomials are
=L x=x x= X+ X; = X432, x, = xt oyt + 1240
Yo=0, =Y, 1y =2xy, y3 =30y 1%, y =4y +ag’, .
If > 0, then x, and y, satisfy

lim X2 = V7, Tim 22 = lim 22 = x + 7y

n—>eo yn noe Xy >0 Y,
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3.
0%y _ Oy _
ax - ay - n-1s
ox
oy

From the above relations, we infer that x, and y, are the polynomial solutions of the wave
equation

4. If B=-1, then #” = x? +1, then the difference equations (8) become
xn+1 =2x Xn + Xn-1> Vnr1 = zxyn +yn—1 . (9)
5. f2x=aand f=1, x,=1, x,=, and y; =1, y, =a—1, then x, and y, generate Morgan-
Voyce polynomials [6], [9].
4. RECURRENCE RELATIONS
1. From the Binet forms (6) and (7), we can derive the following recurrence relations:
(i) xm+n = xmxn +tymym
(ii) ym+n = xmyn +ymxn)
(111) ﬂnxm—n = XX — tymyn’

(IV) ﬁnym—n = X Vm ~ XmVns

V) Xy + B X = 2%,

M) Yiwin + B Vinon = 2%V,
(Vll) Xotn — ﬂnx -n = 2tymyn’ (IO)
(an) Ymn _ﬂnym—n = 2xm n>

(IX) 2(xr2n - xm+nxm—n) = ﬂm—n(ﬁn - x2n)’

(X) Xom ™ Ztym-l-nym—n = ﬂm~nx2n'

2. Put m=nin (i) and (ii) above; then we see that
Xo = X A1V, Yy = 2%V,
and these relationships imply that ‘
(@) x,, is divisible by x, +iv/ty,, if >0,
(b) x,, is divisible by x, +i/ty,, if £ <0,

(c) y,, is divisible by x, and y,; also, if 7 divides s, then x,, and y,, are divisors of y,,.

3. Let 2}, =2. Then, using the Binet forms, we can also derive the following relations:
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1 n~Xn+1HX—
@) Tx,=fuiusd

@) Ty, =2,

2 _ Foy—tnatn-F | AB"-D
(i) Xx, = 2WP-1msyy | 2D

. 2 _ B tn =B _ BB"-D
) 2y = 21(f*-2x,+1) (1) >

(11)

(V) 2 Z X Xpi1-k = My + Ty o

V) 2 E YY1 = Mo =57,

Vi) 22XVt = 2 X1 = W
Now we show an interesting result which generalizes a property that holds between F, and
L,, namely, e/ = F(x), where

F(x)=F+Fx+Ex*+-+F X"+,
and

L(x)= le+hx2 P U P
2 3 n

(see [4]). Let X and Y be generating functions of x, and y,, respectively; that is,

X:i%s", Yziy,,s",
1 1

then Y(s) = sye*X©). To prove this result, consider Y(s) = y;s+ y,5% + y38> + -+ 3, 8" + -+
Then sY(s) = y,8° + 3,8 + yos* + -+ 3, 8™+ and SV(s) = y,8° + y,8° + - 4+ 3,8+
Substituting the power series for Y(s) into the expression Y(x)—2xsY(s)+ As*Y(s), we
obtain

[1-2x5+ ALTY(S) = ys+ 3 s = 20% + B I,
k=1

where we have put y, = y. Now, using the property y,,; —2xy, + fy,_; =0 in equation (8),
we find that the above expression reduces to

[1-2xs+ Bs*Y(s) = ys. (12)
Now consider the series
X =xs+22+BP1 4Dy
2 3 n
and in it express x,, in terms of £, and 77, to get
Xo=2¢nse 2 L@l 2@ s st L@ v e
2 2(2 312 ni2 ’

which can be rewritten in the form
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1 1, 1 1 1 1
—_— — —3 R —— —_— 2 — 3 sen
X(5) 2[§s+2.§sl+3§s’+ ]+2[ﬂs+27752+317s3+ ]
Therefore,

X(s) = —%ln(l—— &s) _-;-111(1 —75) = —%ln[(l— &)(1—ms)].

Since (1— &s)(1—7s) = 1-2xs+ fBs*, we have
2X(s) = —In[1-2xs+ fs*]. - (13)

Now compare (12) and (13) and obtain the desired result: ¥(s) = sye**® .

5. SERIES SUMMATION INVOLVING RECIPROCALS OF x, AND y,

Let us look at some infinite series summations involving x, and y, and extend some of the
infinite series results that are known for F, and L, [4] and for P,(x) and O,(x) [7] to x, and y,.
First, we shall show that

L i 1 (Zx _ﬂ+1):l.

=1 Xk \ X1 X x

To show the above result, consider

1 1 % =%
Xp-1Xk  XpXpe1  Xp-1%%Xk+1
_2xx =g —%y _ 2x B+l
b
X1 Xk 41 Xp1Xk+1 Xk X4

where we have used the property x;,, = 2xx, — fx,_;. Therefore,

i 1(2x_ﬂ+1]:i( 11 ): 1 :%'

=1 X\ Xe-1 % =\ %1% XX XoXy

In particular, if #? = 1+ x” and y = 1, then # = —1, and the above result reduces to

- 1 1
=—,
=1 X1 2X

where x, is given by equation (9). Similarly, we can show that

) i( 2x _ﬂ+l]= 1

k=i \ Xk—1%k11 XX ) X Xrn

For the special case #> =1+x? and y =1, then = —1 and the above result becomes

= 1 1
=3 ,
k=r+l Xk-1%p41  EXX X

where x, is given by equation (9). Following a similar argument, we can show
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2 ( 2x B+l }_ 1
k=rtl\Ve-Ve+1 Viden yryr+1'

Again using 2xx;, = X, + fx,_;, we can derive

£ s (L)
k=rtl Y—1%k1 =i\ Xk Xesi

If &y* =1+ x* and y = 1, then we have

2 x, 1 ( 11 j

oa__1(l, L)
k=r+1 Xi-1%41 2x X X
where x; is given by equation (9). Similarly, from the recurrence relation 2xy, = y,,; + -1
we have

$ 2§ (¢+ p j
k=ril Vie-Vetl  k=ret\ V-1 Vi1

In particular, if z* = 1+x* and y = 1, then 8 = —1 and the above result becomes

$ _ﬁ_zi(g 1 ]
ke YVe-Ves1 2X\ Y, Ve ’

where y, is now given by equation (9).

Now we generalize the results of items 2 and 3 of this section; we shall show that

e 1 [ 2x, _,3’+1): 1

xrx2r

k=2 X(k+D)r Lx(k—l)r Xir
To show this, we consider the left-hand side of the above result:

i 1 (zxrxkr — B Xy — x(k—l)r]

X(k=1yrXir

k=2 X(k+1)r

The above result can be simplified by using property (v) of (10), with m=rk, n=r, that is,
Xpor + B %X_, =2x,%,. Then the above expression becomes

i 1 (x(kﬂ)r - x(k—])rj

k=2 X(e+1)r Xie-1)rXner

which reduces to

a1 1
=2\ Xe-r¥r X Xk+yr ’
which, when summed over £, reduces to 1/ (x,x,,). Similarly, we show that

$_1 [2x, _,B’+1)_ 1

k=2 Ye+yr \Vke-1r  Vir YrYar
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7. Let us now generalize a property that holds for Fibonacci series [4]. For 7 > 0, consider the
series:
w k-1_
s=SE 0 By By, ..
k=2 Yk Yo W W16
Denote

n-1_
S :&+ﬁZY2+ﬂGJ’2+m+ﬂ2 2)’2.

Yo s N6 Yaon
By induction we shall show that
s, =22, (14)
Yyn

Note that y,, =0 implies that either x=0ory =0 from the Binet form for y,,. Therefore,
we shall assume that y,, #0. Observe also that equation (12) is true for n=2,3. Consider
,32"-2)’2 _ Yy " ﬂzn_zyz _ Yy Yy +y2"'82n_2y2

y2n+1 yzn y2n+l yznyzrnl

S

n+l = Sn +

Use the property y,, = 2x,),,, With m=2""" =2(2"), to get

2" -2 2" -2
2x2"y2"y2"_2 +y2"ﬂ y2 — 2x2"y2"_2 +ﬂ y2 )

S =
yny n+l yn+1
2772 2

n

Now recall property (viii) of equation (10), y,.,, = B°Y,., =2x,y,, and in it set m=2",
p=2"-2. We then have

Sn+l — y2n+l_2 i
y2n+l
which completes the induction. Therefore, for 7 > 0, we have
S=lmS,=lm22Z2=g2=_ 1 __
n—c n>© Yo (x +y.\/2)

6. CONVOLUTIONS FOR x, AND y,

Given two homogeneous polynomial sequences a,(x, ¥) and b,(x, y) in two variables x and
y, where n is an integer > 1, their first convolution sequence is defined by

n n
1
(an* bn)( ) = Zajbnﬂ—j = ijan+1—j'
Jj=1 Jj=1

In the above definition, we have written a, =a,(x,y) and b,=5,(x,y). Denote x,*x, = X,

Vo, =Y 2x xy =y and XP +1¥V =x". To determine these convolutions, we use the
matrix properties of B, namely,

n+1
l:x y:l ' — [x"ﬂ y""'ljl — Bl = pigrMti-i — Xi Vil X¥nt1-y  Vnar—y
Z:y x tyn+l Xn+1 tyj xj Wn+1—1' xn+1—j )
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Let

BO = iBjB,,H_ ;= 3B,
j=1

J=1

Note that B” = B,. We prefer using the subscript notation. Since X’_, B,,, =nB,,,, we have

nol X Vol Xpni Vil s
J J n+l-j n+l-j
an+l = Z .
j=1 tyj xj Zlyn+1—j xn+l—j
Let X¥7_, =X, then the above result can be written

nB

n+l

ijxn+l—j +tzyjyn+l—j ijyn+1—j +Zijn+l—j
t(Z X Ypa-j+ Zijn+l—j) XXy A Y Yo ’
or
nB,., = [xn* X, +1y,*y, 2%,%y, ] _ OO _ 50
.
Therefore, we have
x® =y O _p
n n+l> yn yn+1 :
The above result can be extended to the k™ convolution by defining
n
k) _ k-1
Br(t ) - ZBJ(B( ))n+l—j :

Jj=1
Now we shall show that

We shall prove the result by induction on k. Since BY") =nB,,,, the result is true for X =1. Now

consider
BV =% B,B{}}_; = L B,._,(BY),

i+k—1 i+k—1 +k
:ZBnH—j(J k )Bj+k:Bn+k+lz(j k ):(’]1+1)Bn+k+l’

which completes the induction.
From the above results, we write the ™ convolution of x, and y,,:

k-1 k-1
xr(lk) = (n+k )xn+k’ 7(1k) = (n+k )yn+k' (15)

Also, from properties (v) and (vi) of (10), we have

2X0 =nx,, + Y nx,,, — P (16)
Yy Yy
which can be written in the form

2 xM = ® +ﬁl¢ 27D = xO® _&1.
n y > n y
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We can also extend the above result to the k™ convolution of x, and y,, namely,

k k k
X2 x0 y ey ®x y® -y ax®

Using the results (10)(v), (15), and (16), and some computation, we obtain

+k 1 +k-1
2x, *x(k) _(’11c+1) n+k+1 Z (] )ﬁ“k Xn41-2j-k-

Similarly, we have

+k k-1
(’]14_1) Xptk+1 — Z(J +k )ﬁj+k Xp+1— -2j-k>
n+k +k—1
x(k) *V, = ( k+ l)yn+k+l + Z(] )ﬂj+kyn+1—2 j—k>

n+k (+k—1) pj
2, ) = ( k+ l)yn+k+1 E(] k )ﬂj+k}’n+1—2 j—k*

200,43,

What we have seen here is but a sample of the properties displayed by the versatile matrix B.

We are sure there are many more.

10.
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