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1. INTRODUCTION 

In this paper we define the Brahmagupta matrix [see (1), below] and show that it generates a 
class of homogeneous polynomials xn and yn in x and y satisfying a host of relations; the poly-
nomials contain as special cases the well-known Fibonacci, Lucas, and Pell sequences, and the 
sequences observed by Entringer and Slater [1], while they were investigating the problem of 
information dissemination through telegraphs; xn and yn also include the Fibonacci polynomials, 
the Pell and Pell-Lucas polynomials [5], [7], and the Morgan-Voyce polynomials in Ladder 
Networks and in Electric Line Theory [6], [9]. We also extend some series and convolution 
properties that hold for the Fibonacci and Lucas sequences and the Pell and Pell-Lucas polyno-
mials to xn andj„ [7], [5]. 

2. THE BRAHMAGUPTA MATRIX 

To solve the indeterminate equation x2 = ty2 ± m in integers, where t is square free, the Indian 
astronomer and mathematician Brahmagupta (ca. 598) gave an iterative method of deriving 
new solutions from the known ones by his samasa-bhavana, the principle of composition: If 
(x^y^m^ and (x2,y2,^h) a r e trial solutions of the indeterminate equation, then the triple 
(xlx2±ty]y2,xly2±ylx2,mlm2) ls a ' s o a solution of the indeterminate equation which can be 
expressed using the multiplication rule for a 2 by 2 matrix. Notice that if we set 

x 
±ty 

y 
±x 

B(x,y) = \ 

and m = det B, then the results 

B(xu yl)B{x2,y2) = B(xlX2 ± tyy2, xy2 ±y1x2), 

det[B(xu yl)B(x2, y2)] = detB(xu yjdet B(x2, y2) = m^, 

(1) 

(2) 

(3) 

give the Brahmagupta rule. Equation (3) is usually referred to as the Brahmagupta Identity and 
appears often in the history of number theory [10]. 

Let M denote the set of matrices of the form 

x 
ty 

(4) 

where t is a fixed real number and x and y are variables. Define B to be the Brahmagupta matrix. 
M satisfies the following properties: 

1. M is a field for x, y,t GR and t < 0; in particular, if t = - 1 , then we have the well-known 
one-to-one correspondence between the set of matrices and the complex numbers x + iy\ 

x y 
-y x 

<r^x+iy. 
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2. The following eigenrelations, in which J denotes the transpose, hold: 

B[l,±Ji]T = (x±y-Jt)[\,±JI)T, 
and these relations imply 

B"[l,±4t]T =(x±y4iyll,±^]T 

aind 
x y 
ty x 

42 V2 
yl ~V"2. 

x+y4t 0 
0 x - jV? 

V2 yit 
yl \2F. 

Define 

Bn = x y 
ty x tyn Xn. 

:Bn. 

3. Then the following recurrence relations are satisfied: 

*A+I = ^n+tyyn> yn+i = % + y*n> 
with xn - x and yn = y. 

4. Using the above eigenrelations, we derive the following Binet forms for xn and>>„: 

xn = h(x+yJly + (x-y^Yl 

y»=^ji(x+y^y~(x-y^yi 

(5) 

(6) 

(7) 

andxn±Jtyn = (x±Jiy)n. 
5. Let %n = xn+yn<Ji, r\n-yji, and Pn = x2

n-ty2
n, with ^ = 77, £, = £ and /?„ = /?; we then 

have 4 = <f, 77„ = if, and @n=@n. To show the last equality, consider /?" = (x2 -0/2)" = 
£ V = Zfln = (xl ~ Od = Pn- Notice that fi = det5. 

6. The recurrence relations (5) also imply that xn and yn satisfy the difference equations: 
xw+1 = 2xxn-fix^l9 yn+1 = 2x j„ -fiyn_v (8) 

Conversely, if x0 = 1, xi = x, and j 0 = 0, yx-y9 then the solutions of the difference equations 
(8) are indeed given by the Binet forms (6) and (7). 

7. Notice that if we set x = 1/2 = j a n d / = 5, then fi = -l and 2yn-Fn is the Fibonacci 
sequence, while 2xn = Ln is the Lucas sequence, where «>0 . For the number-theoretic 
properties of F„ andZ,„, the reader is referred to [2] and [3]. 

8. In particular, if x = y = 1 and t = 2, then both x„ andyn satisfy x2 - 2 j 2 = (-l)n and they gen-
erate the Pell sequences: 

xn = 1,1,3,7,17,41,99,239,577,..., yn = 0,1,2,5,12,29,70,169,408,.... 

It is interesting to note that if we set 
a = 2(xn+yn)yn b = xn(xn+2yn\ c = x2

n+2xrlyn+2yl 
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we then obtain integral solutions of the Pythagorean relation a2 +b2 =c2, where a and h are 
consecutive integers [8]. 

9. If t = 1, then xn +yn = (x+y)n
9 and if t = - 1 , then xn +iyn = (x + iy)n. Also, for every square 

free integer t, the set of matrices M is isomorphic to the set {x+yjt\x,y G Z } , where Z is 
the set of integers. 

10. 

4 
» £ j - oV + e'7 ^ ( e * - e ' ) , dete" = e^. 

To show these results, let us write 2xfc = ^ + 77*, 2^0^ = ^ - if • Since 
CO Z>fc 

* = 0 A! and ^1 = J_ ** yk 
tyk xk. 

we express xk andj^. in terms of £ and 7 and obtain the desired results. 
11. x„ andy„ can be extended to negative integers by defining x_n = xnB~n and >*_„ = -y„ft~". 

We will then have 

2T x y 
ty x 

*-„ y-n 

here we have used the property 

(r -1-1Y 
x y 
ty x J 

x -y 
-ty x 

TT 
P" 

B 

x» -y» 

All the recurrence relations extend to the negative integers, also. Notice that B° -1, the 
identity matrix. 

3. THE BRAHMAGUPTA POLYNOMIALS 

1. Using the Binet forms (6) and (7), we can deduce a number of results. Write xn and yn as 
polynomials in x and y using the binomial expansion: 

Xn=x»+tfyx»-y+t2(>i)x»-y+---, 
y„ = m"-ly + t(^jx"-y + t2^y-V + -

Notice that xn and yn are homogeneous in x andj. The first few polynomials are 

x0 = 1, xx = x, x2 - x2 +ty2, x3 - x3 + 3tyx2, x4 - x4 + 6tx2y2 +t2y4,..., 

Jo = °> y\ = y, yi = 2xy, ys = ix2y+*y3, y4 = 4x3
y+4txy3,.... 

2. If t > 0, then x„ and yn satisfy 

^» 
J« 

» - > « ^ i "-**.y«-i 
l i m ^ V f , lim-^-=lim : + VFy. 
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3. 

dx dy 
: « V i , 

ay 'dy " ^ 

From the above relations, we infer that xn and>>„ are the polynomial solutions of the wave 
equation 

d2 i d2 ̂  
u = o. ^dxl t dy1 

4. If/? = - 1 , then ty2 = x2 +1, then the difference equations (8) become 
Xn+l=2xXn+Xn-l> JVHI = 2 % + JVl • (9) 

5. If 2x = a and /? = 1, xx = 1, x2 = a, and yx = 1, j 2 = a - 1 , then x„ and j / w generate Morgan-
Voyce polynomials [6], [9]. 

4. RECURRENCE RELATIONS 

1. From the Binet forms (6) and (7), we can derive the following recurrence relations: 

0) xm¥n = xmxn + tymyn9 

(iii) ^ X - K ^ V K - O ^ , 

(iv) ^ " ^ - ^ x ^ - x ^ , 

( v ) *m+w ~*~ P Xm-n ~ ^XmXm 

(Vi) yn*n+Pnyi*-n=2xnym> 

(vii) xw+„ - /?%,_„ = 20vy*> (io) 
(viii) J^"^> m _ w =2x w j ;„ , 
(ix) 2(x2

m - xm+nxm_„) = pm~nU3n - x2J, 
(x) x2m - 2tym+nym_n = ^w~"x2w. 

2. Put m = n in (i) and (ii) above; then we see that 

and these relationships imply that 
(a) x2„ is divisible by xn ±i4iyn, if t > 0, 
(b) x2n is divisible by xn ±i<Jtyn9 if t < 0, 
(c) j>2rt is divisible by x„ and yn\ also, if r divides s, then xr„ and^r„ are divisors of ysn. 

3. Let Sjt=i = E. Then, using the Binet forms, we can also derive the following relations: 
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W 2*yk- p_2x+l , 

(Hi) ^x2 ^n-^^-f +Et^_ 
V ' k 2 ( ) 0 2 - 2 J C 2 + 1 ) 2(y?-l) ' 

K } ^ y k 2f(/?2-2*2+l) 2t(fi-l)> 

(v) 2l,xkxn+x_k=nxn+l+^, 

(vi) 2f I ^ ^ . * = m:„+1 - ^ , 

(vii) 22x^w_^+1 - 2Z ̂ V * + i = WJW 

4. Now we show an interesting result which generalizes a property that holds between Fn and 
Ln, namely, eL^ = F(x), where 

en) 

and 

F(x) = Fl +F2x + F3x2 + - + F„+lx" + - , 

L(x) = Lx + ̂ x2 +^-x2 + ••• +^-x" + • w l 2 3 n 
(see [4]). Let X and 7 be generating functions of xn and_y„, respectively; that is, 

1 n 1 

then Y(s) = sye2X^. To prove this result, consider Y(s) = yxs+y2s2 + y3s* + • • • + y^sP + • • •. 
Then sY(s) = y^+y2s?+y3s4 + ---+yn$"+l + --, md ^(s) = y/ + y2$4 + -• + y^*2 + •••. 
Substituting the power series for Y(s) into the expression Y(x)- 2xsY(s)+fls2Y(s), we 
obtain 

[ l -2x5+^]7(5) = j5 + £ [ j , + 1 - 2 % + ^ _ 1 ] / + 1 , 

where we have put yx=y. Now, using the property yk+l - 2xyk + ftyk_i = 0 in equation (8), 
we find that the above expression reduces to 

[l-2xs+j3s2]Y(s) = ys. (12) 

Now consider the series 

w i 2 3 
n 

and in it express xn in terms of %n and rjn to get 

X(s) = ±(£+ 77)5+| I ^ + ̂ V + i r i ^ + r/3) 53 + . - + ^ 
n 

^ n + rf) *" + .-

which can be rewritten in the form 
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X(s) = - 775 + - / 7 2 5 2 + - 7 7 V + --. 

Therefore, 
X(s) = - | l n ( l - ^ 

Since (1 -£s)(l-r/s) = l-2xs+/fc-2, we have 

2X(s) = - ln[ l-2xs + /fe2]. (13) 

Now compare (12) and (13) and obtain the desired result: Y(s) = sye2X^. 

5. SERIES SUMMATION INVOLVING RECIPROCALS OF xw AND yn 

Let us look at some infinite series summations involving xn andj„ and extend some of the 
infinite series results that are known for Fn and Ln [4] and for P„(x) and Qn(x) Ulto x

n
 a ndj„. 

First, we shall show that 

1. 
00 -J 

X— 
k=l Xk+l 

To show the above result, consider 

2x /? + ! ] _ 1 
V X A r - l 

1 1 *-k+l *k-l 
Xk-lXk XkXk+l Xk-lXkXk+l 

_ ^xxk ~ P*k-1 ~ Xk-l _ 2X 

'k-lXkXk+l Xk-lXk+l ^k^k+l 

fi+i 
Xk-lXkXk+l Xk-lXk+l XjrXi 

where we have used the property xk+l = 2xxk - Pxk_x. Therefore, 

1^ ( 2x fi + l\_^( 1 
jfc=l Xk+1 \Xk-l 

1 
jfc=lV * * - ! * * xkxk+lJ xiixl * 

1 1 

In particular, if ty2 = 1 + x2 and j = 1, then p = -1 , and the above result reduces to 

1 
Xu_\Xu k=i ^k-n+i 

1 
2x2' 

2. 

where xfc is given by equation (9). Similarly, we can show that 

2x fi + l ) 1 
k=r+l\Xk-lXk+l Xk+lXkJ XrXr+l 

For the special case ty2 = 1 + x2 and y = l, then /? = -1 and the above result becomes 

y i = 1 
k=r+l Xk-lXk+l 2 x X r X r + 1 

where xk is given by equation (9). Following a similar argument, we can show 
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3. 2x /? + l 1 

Again using 2xxk = xk+l +Pxk_x, we can derive 

y 2xxk _ y f i -+^-

If fy2 = 1 + x2 and _y = 1, then we have 

3 __L 
Xlr-lXlr-k=r+l xk-\xk+l 2x 

\Xk-l Xk+l 

1 1 
— + \Xr X' r+1 

where xk is given by equation (9). Similarly, from the recurrence relation 2xyk - yk+l +ffyk„i, 
we have 

2xyk i- + -A 
k=r+i yk-iyk+i j t = r + i v ^ - i yk+i j 

In particular, if ty2 = 1 + x2 mdy = 1, then /? = -1 and the above result becomes 

k=r+l 

where yk is now given by equation (9). 
6. Now we generalize the results of items 2 and 3 of this section; we shall show that 

IT1 
Ar=2 X(k+i)r 

2xr /r+i 
\X(k-l)r Kkr 

1 

To show this, we consider the left-hand side of the above result: 

1 I 2xrXkr ~ P X{k-\)r ~ X(k-l)r 

J k=2 X(k+l)r y X(k-l)rXkr 

The above result can be simplified by using property (v) of (10), with m = rfc, n = r, that is, 
xrk+r+ PTxrk-r = ^Xrkxr- Then the above expression becomes 

co i 

IT1 

which reduces to 

k=2 X(k+l)r 

(~ -r ^ 
(k+l)r x{k-\)r 

V X(k-l)rXkr J 

1 1 
k=2\X(k-l)rXkr XkrX(k+l)r J 

which, when summed over k, reduces to 1 / (xrx2r). Similarly, we show that 

1 oo i 

k=2 y(k+l)r y(k-l)r yjcr yry2r 
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7. Let us now generalize a property that holds for Fibonacci series [4]. For t > 0, consider the 
series: 

s=ffi*'l-2y2=y2 {/S2y2 ^y2 | 

h. y2* y4 y% yu 
Denote 

y* y% J i 6 y2n 

By induction we shall show that 
V - ^2"-2 
5""V 

(14) 

Note that j2„ = 0 implies that either x = 0 or y - 0 from the Binet form for j2„. Therefore, 
we shall assume that yT ^ 0. Observe also that equation (12) is true for n = 2, 3. Consider 

y* y7n y~t y»y, 2nJ2n 

Use the property y2m = 2xmym, with m = 2n+l = 2(2"), to get 

$n+l ~ 
_ 2x

ryryr_2 + yrfi y2 _ 2x
ryr_2 + P y2 

y^y, 2nj2n yon+ 

Now recall property (viii) of equation (10), ym+p-j3pym_p =2xmyp, and in it set m-2n, 
p = 2n-2. We then have 

_ 3;
2«+i_2 

J2n+1 

which completes the induction. Therefore, for t > 0, we have 

S= lim £„ = lim ^ - = ^-2 = 1 ^ . 
„_>«> „->«> v (X + JVO 

6. CONVOLUTIONS FOR xn AND yn 

Given two homogeneous polynomial sequences an(x,y) and bn(x,y) in two variables x and 
j>, where n is an integer > 1, their first convolution sequence is defined by 

n n 
(an*bjl) = Y,afin+i-j = X * A + w 

In the above definition, we have written an =an(x9y) and ftw = hn(x, y). Denote xn*xn - Xfp, 
yn^yn- Y^l\ 2xn*yn =y£\ and Xjp +tY^l) = x£1}. To determine these convolutions, we use the 
matrix properties of B, namely, 

.-iw+1 r 
" I = 5^1 = 5/5^1-/= I 

(y x 

X«+l .Vw+1 Xn+1-J y^+l-j 

tyn+l-j Xn+l-J 
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Let 

y=i 7=1 

77+1 

; = i (Vy Xj 

Note that B" = Bn. We prefer using the subscript notation. Since £"=12?n+1 = ̂ „ + 1 ? we have 

Xn+l-j yn+l-j 

Jyn+l-j Xn+l-j_ 

Let Z"=1 = S , then the above result can be written 

1[L Xj-y„+l_j + Z, yjXn+l_j J z, XjX„_ j+tZyjyn+l-j »s„+1 = 

or 

«4,+i = . 2tx„*y„ xn*x„+ty„*y„^ 
^ yd) 
ty® x® 

= B?\ 

Therefore, we have 
*J1} =**«+!> yn)=ny^v 

The above result can be extended to the k^ convolution by defining 

Now we shall show that 
7=1 

w-ri-1]^. 
We shall prove the result by induction on k. Since J5(1) = nBn+u the result is true for k = 1. Now 
consider 

=^»w(j +r>;«=**.^+**">(i;^ w+fc+1? 

which completes the induction. 
From the above results, we write the k^ convolution of xn and^: 

>.(*). n + k-l 
k \xn+k> yn -

Also, from properties (v) and (vi) of (10), we have 

ML 
y 

,(k)_[n+k-r 

2X(1) = nx„+1 + &*-, 2tt-l) = nx„+l -
y ' 

(15) 

(16) 

which can be written in the form 

Pyn Pyn 2XU = XW+^, 2 ^ = ^ -
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We can also extend the above result to the k^ convolution of xn and j„, namely, 

Using the results (10)(v), (15), and (16), and some computation, we obtain 

Xn+l-2j-k' 

Similarly, we have 

LXyn*yn ~\ k + l)X"+k+l M Jc \P Xn+l-2j-k> 

2xW*v ~(n + k)v +y(j + k~l]fr+kv 
LXn yn~[k + l) S"+k+l + 2 \ k )" yn+l-2j-k > 

2x*v^-(n + k)v -y(j + k~l)BJ+kv 

What we have seen here is but a sample of the properties displayed by the versatile matrix B. 
We are sure there are many more. 
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