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1. INTRODUCTION

Let F, denote the finite field of order ¢ = p°, where g is an odd prime. If f(x) is a polyno-
mial of degree d > 1 over F_, then it is clear that

[E;_I]Hgv(f):\{f(x):x eF}|<q,

where [w] denotes the greatest integer less than or equal to w. We say that f(x) permutation
polynomial if V() = ¢, and f(x) is a minimal value set polynomial if

V(f):[%—l}rl.

A polynomial f(x, y) with coefficients in F; is a local permutation (minimal value set) poly-
nomial over £ if f(a,x) and f(x,b) are permutation (minimal value set) polynomials in x for all
aand b in F,. Local permutation polynomials have been studied by Mullen in [5] and [6].

In this note we will consider local minimal polynomials of small degree (< \/E ) on both x and
y. We will show that there are only five classes of local minimal polynomials. Namely,

@) f(x,y)=aX"Y"+bX" +cY" +d,m,n|(q-1),

(b) f(x,y)=(aX+bY+c)"+d,m|(g-1),

(©) f(x,))=aX?Y"+bX* +cX +dY" +e,n|(g-1),

(d) f(x,y)=aX"V? +bY* +cY +dX" +e, m|(q-1), and
(€) f(x,y)=aX?Y? +bX*+cY* +dX +eY + gXY +h.
where X = (x—x,) and ¥ = (y - y,) with x,, y, in F.

2. THEOREM AND PROOF

Minimal value set polynomials have been studied by several authors. L. Carlitz, D. J. Lewis,
W. H. Mills, and E. Strauss [2] showed that, when ¢ is a prime and d = deg(f) < ¢, all minimal

value set polynomials with V'(f)>3 have the form f(x)=a(x+5)? +c with d dividing g—1.
Later, W. H. Mills [4] gave a complete characterization of minimal value set polynomials over
arbitrary finite fields with d < /g . A weakened form of Mills's results can be stated as follows:
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Lemma 1 (Mills): If F, is a finite field with g elements and f(x) is a monic polynomial over F,
of degree d prime to g, then

d<Jq and V(f):[q—;—l}rl

imply
d|(g-1) and f(x)=(x+b)+c.

For other related results, see [1] and [3]. We are now ready for our result.

Theorem 2: Let F, denote a finite field of order g = p®, where p is an odd prime. Let
n m .
f(x7 )’) = zai(x)yl :ij(y)xj
i=0 Jj=0

denote a polynomial with coefficients in Fq. Assume that m, n, n—1, and m—1 are relatively
prime to g and 1 <m, n < JZj . Assume a,(x)b,(y) #0 for all x, y in F,. Then f(x,y) is a local
minimal polynomial if and only if f(x, y) has one of the following forms:

@ f(x,y)=aX"Y"+bX" +cY" +d m, n|(qg-1),

®) f(x,))=(aX +bY +c)" +d,m|(g-1),

(©) f(x,y)=aX*Y"+bX*+cX +dV" +e,n|(g-1),

(d f(x,y)=aX"Y?+bY* +cY +dX™ +e,m|(qg-1), and

(@ f(x,y)=aX?Y?+bX*+cY*+dX +eY +gXV +h.

where X = (x—x,) and ¥ = (y — ;) with x, y, in F;.

Proof: If f(x,y) is one of the forms (a)—(e), then it is easy to see that f(x, y) is a local
minimal value set polynomial. Now, let

FG6p) =Y a@y =350
i=0 J=0

denote a local minimal value set polynomial over F; satisfying:

(i l<mn< JZI_ ,
(i) (mn(m-1)(n-1),q)=1,
(iii) a,(x)b,(y)#0 forallx, yin F,.

Also, and without loss of generality, assume that m<n and n>3 [n=2 gives form (e)].
Then, by Lemma 1,

£, )= a,,<x>(y 4 Zi(X) J b () - 2= (1)
na, (x) n'a) " (x)
_ b)) _0)
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for allx, y in F; and m,n|(q—1). Hence,

b,:,"‘%y){(an(x)y 40 a0 - m—a:;,fx)}

] ) ®)

=af‘(x){(bm(y)x+—~—b'"~‘(y)) +bo(y)b,:,"-lcy>———”'"-l,§”}
m m

for all x, y in ;. Further, since l<m<n< \/5 , equdtion (3) also establishes the equality of the
polynomials. Therefore,

b,'é"z(y){aﬂ_l(X)y"+a§_2(x)a ()Y T "’( )y+ao(X)a" 2(x)}

=a:‘z(x>{b,:."*lcy)x'"+b:,,"‘2(y>b SO et ’”‘l(y)x+b0(y)b"’“ (y)}

Hence,

a’*(x) divides( )___n (), 4 (x) y 3y G0 n—l(x)

n n"

and, consequently, a”*(x) divides a’"}(x). Now, if g(x) is an irreducible factor of a,(x) so

that g°(x)|a,(x) but g (x)fa,(x), then g°(x) divides a, ,(x) for some integer e such that

1< c(n—2)<(n—1)e. Therefore, since deg(g(x))>2, e <c-1 implies c(n—2) <(n—1)(c—1) or
—-1< c<Z <2 acontradiction. Thus, a,(x) divides a,_;(x).

Case 1. a, ,(x)=0. Then, by (1),
F(x, ) =a,(x)y" +ay(x) = (Z a,x jy" + D X =Y ()" +ag)x'
i=0 i=0 i=0

V' a0

a, "+a,, )"
= (anmyn + aom)( + L= _Qmi)i_gﬂ—i_

(anmy + aOm) mm(anmyn + aOm)m_1

m
n
) Ty +ay —

Hence, f(x, y) has the form (c) or m>3 and
(anmyn + aOm)(’:l)(anm—ly - oy ) = m'yn + Ay,

m(anmy g + aOm)

or

(};))(anm—ly +aom_1) — (anmyn +a0m)m—-i——l(amyn +a0i) ) (4)

m

forallyin Fj, andi=12,...,m. So, ifanmzo,theha , =0 and we obtain

nm—

m m
a, a,
— Om-1 n 0m-1
f(x’ y) - aOm(x +— ) +an0y +a00 —[ o ) Dom»

Om Om
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where a,,a,, # 0. On the other hand, if a,,, # 0, then, again by (4),

YDom _ Yom-1
Ay Bym-1

Therefore, either f(x, y) has the form (c) or

n+ m n m
f(x, y) — (anmyn +aOm)(x + anm—ly - aOm—l) +an0yn +a00 _ (flnnm—-l.y n+ aOm—I')n_]
m(a,,y" +a,,) m”(a,,y" +a,,)

m
a, a,,._
=(a,)" +"0m)(x +—n;':; 1) +a,0)" +a5, — (mn; 1

) (anmy "+ aOm)
and f(x, y) has the form (a).
Case 2. a,(x)|a,_(x)#=0. Then, by (1),

deg(a,(x))+(n-1) deg( ”‘E( )))

Hence, either deg(%=1>2 zi’)‘)) 0 or deg(®r? ;'“(S) =1 and deg(a,(x))=0. First, we assume that

deg(“=2) =1 and deg(a,(x)) =0. Thus, n—1<m<n and '

a,(x)
J6 )= 40 +ax+a)" +g(x),
where 4a, # 0 and g(x) denotes a polynomial of degree less than or equal to n. Now, m=n-1
gives b,(y)=b, ,(y)=na](y+¢)+c,, a contradiction to (iii). Thus, ,(y) =5,(y) is a con-
stant polynomial, deg(22=92) =1 and

b ()
S, )= A(x+ay+c,)" +h(y),

where A,a, #0 and A(y) denotes a polynomial of degree less than or equal to n=m. Therefore,
there exist constants 4, a;, and ¢; such that

A(x+ay+c)' +Z’7‘xi =A4(x+ay+ac)” +zsi}’i ) Q)

i=0 i=0

where g(x) =237 ,rx and h(y)=3",sy'. Now we compare the coefficients of x")’ in (5) to

obtain
n\ i ny i
(sl
fori=1,..,n—1. Since (n—1,4q) =1, it follows that 4, = 4; and a, =a;. Thus, comparing the
coefficients of "%y, ¢, = ¢;. Therefore, g(x)=h(y)=d for some constant d, and

f(x,y)=A(x+ay+c)"+d
which has the form (b).
Now we assume that deg(“=> ZS)) 0. Then

S ) =a,(x)p+a) +g(x)

142 [MAY



LOCAL MINIMAL POLYNOMIALS OVER FINITE FIELDS

for some a €F,. Therefore, f(x,y—a)=a,(x)y"+g(x), which is a polynomial already con-
sidered in Case 1. This completes Case 2 and the proof for m<n. If n<m, then a similar argu-
ment will provide form (d).

The next example illustrates the necessity of the condition (n—1,¢) =1.

Example: For ain Fg, let f(x, y) denote the polynomial

fe, ) =2x*+Xy+x° +y* +2ac® +ay® +2a°x +a’y.
Then
f(x,y)=(x+y+a)* +x* +a® +a’x +2a*
=2(x+2y+a)* +2y* +a’.

Therefore, since 4|80, f(x, y) is a local minimal polynomial that is not in the list (a)—(e).
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