
ON REPETITIONS IN FREQUENCY BLOCKS OF THE GENERALIZED 
FIBONACCI SEQUENCE «(3,1) WITH n0 = ut = 1 

Gyiila Darvasi 
Teacher's Training College, Department of Mathematics, H-4400 Nyiregyhaza, Hungary 

MihalyNagy 
Teacher's Training College, Department of Computer Science, H-4400 Nyiregyhaza, Hungary 

(Submitted August 1994) 

Let u^-^-l and define the generalized Fibonacci sequence (un) = u(3,l) to satisfy the 
recurrence relation un - 3un_x + un_2 for n > 2. For an integer m > 1, let (un) denote the sequence 
(un) considered modulo m. It is known that (un) is purely periodic [7], that is, there exists a 
positive integer r such that un+r - un for all n = 0,1,.... Define him) to be the length of a shortest 
period of (un), and S(m) to be the set of residue frequencies within any fLill period of (un), as 
well as Aim, d) to denote the number of times the residue d appears in a full period of (un) ([5], 
[6]). Hence, for a fixed m, the range of Aim, d) is the set S(m), that means 

{A(m, d):0<d<m} = S(m). 

We say (un) is uniformly distributed modulo m if all residues modulo m occur with the same 
frequency in any full period. In this case, the length of any period will be a multiple of m\ more-
over, 1^(^)1= 1 and Aim, d) is a constant function [4], 

For a fixed m>2, form a number block Bm eNm to consist of the frequency values of the 
residue d when d runs through the complete residue system modulo m. This number block, 
Bm, will be called the frequency block modulo m, which has properties like {qBm)r = q(Bm)r and 
((BJY = (BJS with 

r times 

and q,r,s &N. Here are some examples for Bm together with the period length h(m). 

B2=(l,2) K2) = 3 
£,=(0,1,0) A(3) = l 
B4= (1,3,1,1) h(4) = 6 
B5 =(0,3,3,3,3) h(5) = l2 
Bs = (0,3,0,1,2,3,2,1) h(8) = l2 
B9 = 2(B3f h{9) = 6 
B16 = (0,3,0,1,2,3,0,1,0,3,0,1,2,3,4,1) h(l 6) = 24 
5,8 = (0,2,0,0,1,0,0,1,0,0,0,0,0,1,0,0,1,0) h(l 8) = 6 
B26=4{B2f h(26) = \56 
B27=2(B3)9 h(27) = U 

B32=(Ae)2 h(32) = 4S 
B52=2(B4)13 h(52) = \56 
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B54=(B^)3 A(54) = 18 
B65=(B5)13 h(65) = \56 

Bsl=2(B3)21 h(U) = 54 

All but the first few examples show a certain kind of repetition in the frequency blocks, that 
means such frequency blocks can be produced by repetition of their first few elements a whole 
number of times. For a given m, this repetition is possible only in the case for which there exists 
an integer 1 < c <m such that c\m and h(c)\h(m). Moreover, the first few repeating elements of 
Bm are the elements of Bc or some multiple of them. Letting 0 < x < c, 0<y <m, and y = x 
(mod c), this fact can be expressed by A(m,y) = q- A(c, x) for some positive integer q. A similar 
result in connection with the uniform distribution was found in [3] for the Fibonacci numbers. 
The considered sequence (un) is uniformly distributed modulo 13 for k > 1 (see [1]). Thus, the 
above examples show that the repetition in the frequency blocks does not occur exclusively in 
connection with the uniform distribution. 

To search for repetition possibilities in the frequency blocks of the sequence (ww), we made a 
computer run for moduli m< 1000. However, we did not consider moduli m with I3\m because 
we wanted to investigate the repetition possibilities that had no direct connections with the 
uniform distribution. 

Making use of the above-mentioned notation A(m, y) = q- A(c, x) with 0 < x < c, 0<y<m, 
y = x (mod c), and 1 < q e N, we discovered the following: 

D l : A(3k+\y) = 2-A(3,x) f o r * > l . 
D2: A(3kc, y) = A(c9 x) for * > 1 and c G {18,21,33,36,45, 

D3 
D4 
D5 
D6 
D7 

51,57,69,72,87,90,93,111,123,126,144,147,159,180, 
198,201,219,231,237,252,291,303,306,315,321,327}. 
A{pk+\y) = A(p, x) fork > 1 and/? e{l 1,17,29}. 
A(Uc9y) = A(c9x) force{22,33,44,55,66,77,88}. 
A(l7c,y) = A(c,x) fore G { 3 4 , 5 1 } . 

A(2c,y) = A(c, x) for c e{16,48,144,368}. 
A(6c, y) = A(c, x) for c = 144. 

Now it is natural to ask how the above discoveries could be proved. We will give proofs for 
some of them. 

We note that in this paper (a, b) and [a, b] will denote the greatest common divisor and the 
least common multiple of the integers a and b, respectively. 

Lemma 1: The sequence (un) is purely periodic mod 3r with the exact period length h(3r) = 1 
for r - 1 and h(3r) = 2-3r _ 1 for r > 1. Let w be a fixed integer with 0 < w <h(3r). If uw leaves 
the remainder x mod 3r ( 0 < x <3r), then the numbers u .h^ (0<j<2) leave the remainders 
x + i-3r (0 < i < 2) mod 3r + 1 in a certain ordering. 

Proof: The fact that (un) is purely periodic mod 3r with period length h(3r) - \ if r = 1 and 
h(3r) = 2»3r~l if r > 1 follows by arguments similar to those given by Wall in Theorems 1, 4, 5, 
10, and 12 of [7]. The remainder of Lemma 1 follows from results in the preprint "Bounds for 
Frequencies of Residues in Second-Order Recurrences Modulo p r " by Lawrence Somer. 
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Lemma2: For2<ceN, (c,3) = 1, and \<k eN, let q = h(3k+l c) / 3h(3k c). Then ? = 1/3, 2/3, 
or 1 if k = 1, and q = 1/3 or 1 if k > 1. 

Proof: Since (c, 3) = 1, we have 

9 = 
[h(3«+l),h(c)] 
3[h{3k),h{c)\ 

The case A = 1 yields 

[h(9\h(c)] _ [6,h(c)] 
<1 = 3[h(3),h(c)] 3[l, h(c)] (6,h(c)) 

[2 if (6, h(c)) = I, 
1 if (6,h(c)) = 2, 
2/3 if (6, h(c)) = 3, 
1/3 if (6, h(c)) = 6. 

Now, using the known facts that A(2) = 3,h{3)-1,h(6)-3, andh(c) is even for c>3 and 
c^ 6, we obtain (6, A(c)) = 1 iff c = 1 or c = 3, which are excluded in Lemma 2. Moreover, if 
(c, 3) = 1, then (6, h(c)) = 3 iff c = 2. 

In the case A: > 1, we have by Lemma 1 that 

„_ [2-3kh(3),h(c)] _ [2?,h(c)] 
J 3[2-3Ar_I/?(3),/?(c)] 3[2-3*-\ h(c)] 

^(2-3k-\h{c)) J\I3 if3k\h{c\ 
~ (2• 3k,h{c)) ~ [l if 3'-l\h(c) and 3'\h{c), where \<t<k. 

For some 1 < b eN, let v3(ft) denote the exact power of 3 such that 3V3(6)|Z> but 3Vi(- \b. 

Corollary 1: For 2<ceN, (c,3) = l, and \<keN, q = h(3k+1 c)13h(3kc) is an integer iff 
v3[h(c)] <k-\. In this case, the only possible value for q is q = 1. 

Corollary 2: For 2<c = 3rs eN, r eN, l<s eN, (s, 3) = 1, we have: 

r = 0 => h{3c) = /?(c), 

r = l=>A(3c) = 

6/?(e) if 5=1, 
3/?(c) ifs>2and3|/*0), 
2A(c) if 5 =2, 

[h(c) if 5>2 and 3\h(s). 

r>\=>h(3c) = \Kc) i f 3 > ( 5 ) ' \3h{c) otherwise. 

Hence, the value of q - h(3c)13h(c) with c-3rs, r eN, 1<S GN, and (s, 3) = 1 cannot be 
an integer if r = 0, or if r = 1 and s > 2 and 31/?(s), or if r > 1 and s > 2 and 3r\h(s). These cases 
can be omitted from here on. 

Corollary 3: For 2 < c = 3rs e # , 1 < r, 5 e N, and (5,3) = 1, 9 = /*(3c) / 3h(c) is an integer iff 
r > 1 and v3[/?(V)] < r -1. Now suppose that # is an integer. If r = 1 and s = 1, then q - 2; if 
r = 1, s> 1, and (5*, 3) = 1, then q-\\\ir>\ s>l, and (s, 3) = i, then again <7 = 1. 
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Theorem 1: For 2<c = 3rseN, l< r , seN, ( J , 3 ) = 1, v3[/*(s)]<r-l, and q = h(3c) / 3h(c), 
we have 53c = q(Bc)3. 

Proof; Case 1. r = 1 
Now c = 3s, (s, 3) = 1, and v3[/?(s)] < 0 => 3|/?(.s). 
If 5 = 1, then q = /*(9) / 3/2(3) = 2. Thus, Bi = 2(J53)3 can be checked by computation. 
If 5 > 1, then q = /i(3c) / 3/i(c) = 1. Thus, we need to prove that B3is = (B3s)3. 
Since h(3c) = 3h(c) and h(3s) = A(.s), we need to show that, for any w GN and j e {0,1,2}, 

the three values of uw+jh^ are pairwise different modulo 9, and hence also modulo 9s. Let 
j \ > h E (^ 1' 2) with 1 < | jx - j 2 | < 2. For a fixed w e JV, let zx and z2 be the residues of the num-
bers w + jjtfjs) and w + j2h(s) mod h(9), respectively. This means 0 < |z1 - z2\ < h{9) = 6. The 
consequence of s > 1 and 3|/*(s) is that 5 > 7; therefore, /2(s) is even. This yields 

2 <h(s) <h(s)\jx - j2\ = \zl-z2\^0 (mod6), 

so that zx and z2 are different mod 6 and, in addition, are not consecutive numbers; whence, uZ{ 

(mod 9) and uz (mod 9) also have two different values that can be checked using the following 
table: 

n 
un (mod 9) 

0 
1 

1 
1 

2 
4 

3 
4 

4 
7 

5 
7 

6 
1 

Case 2. r > l 
Now c = 3r$, (s,3) = 1, and v3[h(s)] < r -1 => q - h(3c) 13h(c) = 1. Thus, we must prove that 

B3c = (Bcf. 
We need to show that, for any fixed w GNmdj e{0,l,2}, the numbers uw+Jh^ are pairwise 

different modulo 3c. Since (s, 3) = 1 and v3[h(s)] < r -1, we have h(c) = h(3rs) = [h(3r\ h(s)] = 
h(3r)z with some 1 <z <EW and 3|z. Hence, for a fixed w eNandj e{0,l,2}, the numbers 
w + jh(c) and w + j7*(3r) are always in the same residue class modulo h(3r). Therefore, the 
numbers uw+J-h^ and uw+Jh,y\ are also in the same residue class modulo 3r. But the numbers 
uw+jh(3r) a r e pairwise different mod 3r+1 because of Lemma 1. Thus, the numbers uw+jh{c) are 
again pairwise different mod 3r+I, and thereby also mod 3c. 

Theorem 2: For 1 < k e N and q = h(3k+l) 13h(3k), we have #3*+, = q(B3k)3. 

Proof: We proceed by induction on k. For k = l, we go back to Case 1 of Theorem 1, 
whence q = 2 and B3i = 2(53)3. 

Assume the statement is true for k > 1. As a consequence of Case 2 of Theorem 1, we can 
take 9 = 1. Thus, J53(ik+1)+1 = £3(3*+i} = l-(53*+i)3 - ( g ( ^ ) 3 ) 3 = ?((53,)3)3 = <l(B3k+l)3. 

Corollary 4: For 1 < Jk e N and g = A(3*+1) / 3A(3*), we have 53*+i = 2(53)3*. 

Proof: k = l=>q = 2 and B32=2(B3)3. k>l=>q = l and B3k+l = (B3k)3 = (B^^)3 = 
((VO3)3 - (%032 = - = ( V - (2(53)3r - 2(B3f. 
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Corollary 5: For any \<k eN, we have |£(3*)| = |iS(3)| = 2. 

Thus, we have a complete proof for Dl. The statement in D2 is a direct consequence of 
Theorem 1. The proof of D7 can be done using D2 and D6 as follows: 

B6c=B3(2c)=(B2c)3 = ((Bc)2f = (Bc)6. 

The proofs of the other discoveries can, for the most part, be carried out in a similar manner, 
so they are left to the interested reader. 

The only reason for considering the above specific problem was Corollary 2 in [1], where it 
was proved that the sequences u(3,1) with u0 = 1 and ux e{l,3,5} are uniformly distributed mod 
13* for all k > 1. The reader should consider the related more general sequences u(p, 1) satisfy-
ing the recursion relation un - pun_x + un_2 for n > 2 with u0 = ux - 1 and p a fixed odd prime. It 
can be proved by similar methods that B k+l - 2(Bp)pk is also valid for these recurrences; here, Bp 

refers to the frequency block defined above. The reader might consider proving this result, and 
possibly other results similar to those found in this paper. In the meantime, it is advisable to 
remember the fundamental fact that the recurrences u(p, 1) with u0 = ux - 1 are irregular modulo 
p, that is, the vectors (z/0, ux) and (ux, u2) are linearly dependent modulo/?. 
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