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1. INTRODUCTION 

A well-known digital expansion is the so-called Zeckendorf number system [7], where every 
positive integer n can be written as 

L 

k=Q 

where Fk denotes the sequence of Fibonacci numbers given by Fk+2 = Fk+l + Fk, F0 = \, and 
Fx-2 (cf. [5]). The digits sk are 0 or 1, and sksk+l - 0. Using the same recurrence relation but 
the initial values L^ - 3 and Ly = 4, the sequence Lk of Lucas numbers is defined. In a recent 
volume of The Fibonacci Quarterly, P. Filipponi proposed the following conjectures (Advanced 
Problem H-457, cf. [2]). 

Conjecture 1: Let f(N) denote the number of l's in the Zeckendorf decomposition of N. For 
given positive integers k and n, there exists a minimal positive integer R(k) (depending on k) such 
that f(kFn) has a constant value for n > R(k). 

Conjecture 2: For k > 6, let us define 

(i) ju, the subscript of the smallest odd-subscripted Lucas number such that k < LM, 
(ii) vv the subscript of the largest Fibonacci number such that k > Fv + Fv_6. 

Then R(k) = max(//, v) + 2. 
We note that we have chosen different initial values compared to [5] and [2] (the so-called 

"canonical" initial values, cf [4]) which seem to be more suitable for defining digital expansions 
and yield an index translation by 2. In [3] we have proved that the first conjecture is true in a 
much more general situation, i.e., for digital expansions with respect to linear recurrences with 
nonincreasing coefficients. As in [3], let U(k) be the smallest index u such that 

L(k) L(k) 
kFu=lLStFt a n d kFn=Y.£ZFl+n-u^n^U- (1 -2 ) 

We prove an explicit formula for U(k) in terms of Lucas numbers that is an improved version of 
Conjecture 1. Note that Filipponi's Conjecture 1 has been proved by Bruckman in [1] and for the 
more general case of digital expansions with respect to linear recurrences in [3]. We have also 
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obtained a weak formulation of Conjecture 2 which only yields an upper bound for U(k). 
However, Bruckman's proof of a modification of Filipponi's Conjecture 2 is false because his 
proof does not guarantee the minimality of R(k); this was pointed out in a personal communica-
tion by Piero Filipponi. We apologize here for referring in [3] to this erroneous proof instead of 
presenting our own proof of the original Conjecture 2. It is the aim of this note to provide a 
complete proof of Conjecture 2. 

2. PROOF OF CONJECTURE 2 

In the following, let V(k) = L(k) - U(k) be the largest power of the golden ratio (5 - ^ p in 
Parry's ^-expansion of k, see [6]. Obviously, V(k) = I log^ k\. For proving Conjecture 2, let us 
intro-duce some special notation. By Zeckendorf s theorem, every nonnegative integer n can be 
written uniquely as 

n = Fkr+:. + Fki+Fki, kr>->k2>kx,r>0, (2.2) 

where k' > k" means that k' > k" + 2 [compare to (1.1)]. 
It will be convenient to have the sequences of Fibonacci and Lucas numbers extended for 

negative indices. Let F_2 = 0, F_x = 1, F_„_2 = (-l)n+lFn_2 and L_2 = 2, L_x = 1, L_n_2 = (-l)"Ln_2 

for positive integers n. In this way, the definitions of ju and v hold for all integers. We need the 
following well-known lemmas which can be shown by induction. 

Lemma 1: For integers m and n, we have LmFn = (-l)mFn_m + Fn+m. 

Lemma 2: Let m and n be integers, n > m and m = n mod 2. Then 
n-m 

2 

7 = 1 

Theorem 1: For all positive integers k there exist uniquely determined integers cx,...,ct such that, 
for all integers n, 

kFn = tFn+Ci (2.3) 

with 
-U(k) = cl<c2<-<ct_l<ct= V(k), (2.4) 

where U(k) > 2 are even numbers defined by Lu^k-)_3 < k < Zf/(yt)_1. 

Proof: We consider the following partition of the set of natural numbers N = U°L_i L,-, where 
L_i = {1} and Lj = {n eNIZ^.j < n < I^j+i) for j > 0. The proof will proceed by induction onj. 

If j = - 1 , i.e., k = 1, then the assertion is satisfied with t - 1 and cx - 0. Suppose that (2.3) 
and (2.4) hold for j > 0 for each /' with -1 < i < j -1 and all k elr Then we have to show (2.3) 
and (2.4) hold for all k eLj. Three cases will be distinguished. 

Case 1: L2j_1 <k <L^ 

From Lemma 2 with rn = 2j + l and by - Fn_2j+l = Fn_2j - Fn_2j+2, we have 
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kFn = Fn_2j - Fn_2j+2 + (* - I^j^Fn + Fn+2j_x. (2.5) 

Since 1 < k - I^j^ < I^j^, by the induction hypothesis we obtain from (2.5), 
t 

kF„ = F„_2J - Fn_2j+2 + X Fn+- + Fn+2j_x (2.6) 
7 = 1 

with cx > -2(y -1), ^ < 2(7 -1) - 1 , and q <̂  • • • <̂  ̂ . Write (2.6) in the form 

kFn = Fn_2j +F -F^2J+2 + ± F + F„+2J_X. (2.7) 
/=i 

If q = -27 + 2, then by c~x<c^ we have -2j + 4 <~c1. Letting t = t+\ cx --2j, and c2 =~c~2, ..., 
ct_x~'cl, then cx<c2-4. Thus, cx<c2 and, by the induction hypothesis, c2<--<ct_x. If 
~cx > -2(7 -1) , then Lemma 2 applies for F + _ - Fn_2j+2 since, by the induction hypothesis, q is a 

value of the even-valued function U. Hence, we get 
t i 

kFn = Fn~2j+HF
n -2j+2£+l 

+ I W W a y - i (2-8) 
£=l i=l 

with i = (c~t - 2(7 -1)) / 2. Representation (2.8) is already in the form (2.3). Letting / = / + ? + 2 
and ^ = - 2 / , c2 = -2y + 3, ...,cf+1 = q- l , c f + 2 = ^,. . . , cf+r-+1 = ^ , and using c2 = cx + 3, ci+x> 
ct+2 (i = 2,..., ?), we get cx < c2 < • • • <̂  c*+1. Applying the induction hypothesis yields c-+2 <̂  • • • 
<̂  ct_x. Taking ct - 2j - 1 , (2.4) is established. 
Case 2: L^j <k <L2j+1 

From Lemma 1 with m = 2j we derive 
kF„ = F„_2j +(k- Ly)F„ + F„+2,. (2.9) 

Since 1 < k - Lq < A^-b t r i e induction hypothesis yields a representation of the form (2.3), 

kF,n = ̂ v+itFn+c.+F»+V> (2-10) 
J = l 

with q > -2(7 -1), cj > 2(7 -1), and ~cx <̂  • • • < ~ct. Letting / = t + 2, q = -27, ct = 27, and c/+1 = 
q (/ = 1,..., f), we obtain (2.4). 

Case 3i k = L^j 
By Lemma 2 we have LljFn - Fn_2j + Fw+2/. Thus, we can proceed without using the induc-

tion hypothesis, obtaining (2.3) and (2.4) with t = 2,cx = -2j, and c2 = 2j. 
Uniqueness of cx,..., ct is implied by the uniqueness of the Zeckendorf representation. • 

Corollary 1: As an immediate consequence of Theorem 1, we get R(k) < U(k). 

To prove Conjecture 2, we need an additional lemma. 

Lemma 3: Let cx and c2 be as in Theorem 1. Then c2 - cx + 2 if and only if 

k>2L_c,. (2.11) 
<-r 
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Proof: By Theorem 1, we have 4Fn = Fn_2 + Fn + Fn+2; thus, c2 = cx + 2. Also by Theorem 1, 
for k > 5, we obtain c2 > cx + 2 and q = -2y for some integer 7 > 1. From the proof of that 
theorem, it is clear that L ^ < k > Ly+i. If Z27_1 <k <L2j, then c2>cl-\-2. If £ = Z^, then 
^ = 2 and c2 - q = 4/ > 2. If L^j <k< I^j^, then 0 < & - Z^ < Z^^. Observing that (2.11) is 
equivalent to k-L2J>L2J_3, Theorem 1 yields U(k-L2J)>-2(j-I) if 0< k-Llj < Z2(7-_i)_1 

and £/(£- Z^.) = -2(y.-1) if Z2(y-_1)«1 <k-L2J < Z^.^+i• Thus, we conclude that c2 = -2y' + 2 if 
and only if (2.11) holds. • 

Theorem 2: R(X) = 0, i?(2) = Z?(3) = 1, and for k > 4 we have 

[27-1 i fZ 2 , 3 <*<2Z 2 / . 3 , 
[2y if2L2j_3<k<L2j_v 

Proof: R(l) - 0 is immediate from the definitions. By the identities 27^ = Fn_2 +Fn+l, 3Fn = 
Fn_2 + F„+2 for integral«, and 2FX =F0 + F2, 3FY = F0+F3 we obtain R(2) > 1 and R(3) > 1. Since 
2F0 = Fj and 3F0 = F2, we get i?(2) = i?(3) = 1. Let * > 4. By Corollary 1, we have R(k) < U(k) 
mdf(kFr}) = tfovn>U(k). 

In the following, we distinguish two cases. 

Case 1: IL^j^ <k<Z^.j 
Let n - U(k) -1. We show that in this case f(kFn) <t\ hence, R(k) = U(k). Theorem 1 and 

Lemma 3 yield 

kFH = K1+Fl+iTF„+Ci = F2 + ±F„+Ci. (2.12) 
7=3 7=3 

If « +C3 > 3, then the right-hand side of (2.12) is a Zeckendorf representation and f(kFn) = t-l. 
If n + c3 = 3, then let z'0 be the largest /' > 2 such that ct = ct_2 +2; let i0 - 1 if such / does not exist. 
Then the right-hand side of (2.12) can be written in the form of a Zeckendorf representation as 

t 

• f w ^ i + E ^ w (2-13) 
Thus,/(*/*,) = f-/0 + l. 

Case 2: Z2j_3<A<2L2y_3 

We show f(kFn) = t provided that n = U(k)-l; however, f(kF„) = t-l for n = U(k)-2. 
Hence, we have R(k) = U(k) - 1 . Let n = U(k) - 1 . As a consequence of Theorem 1, we get 

Wn = F^ + ̂ F^ = F0 +YFn+Ci • 
7 = 2 7=2 

Applying Lemma 3, we derive n + c2>2. Thus, the right-hand side is the Zeckendorf repre-
sentation of kFn and we obtain f(kFn) -1. Let n = U(k) - 2. Theorem 1 yields 

kFn = /L 2 + £ Fn+C( = £ / ^ . (2.14) 
7=2 7=2 
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The right-hand side of (2.14) is the Zeckendorf representation of kFn\ hence, f{kFn) = t - 1 and 
the proof is complete. D 

Remark: To see that R(k) is the same as in Filipponi's Conjecture 2, note that ju = 2j-l if 
Lzj-x < k < Lzj+i and if Fv + Fv_6 (in the definition of v) can be replaced by 2LV_3. 
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