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1. INTRODUCTION

A well-known digital expansion is the so-called Zeckendorf number system [7], where every
positive integer # can be written as

L

n=3 &5, (1)
k=0

where F, denotes the sequence of Fibonacci numbers given by F, ., = F,, +F,, Fy=1, and

F =2 (cf [5]). The digits ¢, are 0 or 1, and ¢,¢,,, =0. Using the same recurrence relation but

the initial values L, =3 and L, =4, the sequence [, of Lucas numbers is defined. In a recent

volume of The Fibonacci Quarterly, P. Filipponi proposed the following conjectures (Advanced

Problem H-457, cf. [2]).

Conjecture 1: Let f(N) denote the number of 1's in the Zeckendorf decomposition of N. For
given positive integers k and n, there exists a minimal positive integer R(k) (depending on k) such
that f(kF,) has a constant value for n > R(k).

Conjecture 2: For k > 6, let us define

(i) u, the subscript of the smallest odd-subscripted Lucas number such that k < L,
(ii) v, the subscript of the largest Fibonacci number such that £ > F, + F,_.

Then R(k) = max(u, v)+2.

We note that we have chosen different initial values compared to [5] and [2] (the so-called
"canonical” initial values, cf. [4]) which seem to be more suitable for defining digital expansions
and yield an index translation by 2. In [3] we have proved that the first conjecture is true in a
much more general situation, i.e., for digital expansions with respect to linear recurrences with
nonincreasing coefficients. As in [3], let U(k) be the smallest index u such that

L(k) Lk
k[;l“ — ZEZE and kE,: ZEZE+n—u VnZu (12)
£=0 £=0

We prove an explicit formula for U(k) in terms of Lucas numbers that is an improved version of
Conjecture 1. Note that Filipponi's Conjecture 1 has been proved by Bruckman in [1] and for the
more general case of digital expansions with respect to linear recurrences in [3]. We have also
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obtained a weak formulation of Conjecture 2 which only yields an upper bound for U(k).
However, Bruckman's proof of a modification of Filipponi's Conjecture 2 is false because his
proof does not guarantee the minimality of R(k); this was pointed out in a personal communica-
tion by Piero Filipponi. We apologize here for referring in [3] to this erroneous proof instead of
presenting our own proof of the original Conjecture 2. Tt is the aim of this note to provide a
compiete proof of Conjecture 2.

2. PROOF OF CONJECTURE 2

In the following, let V' (k) = L(k)—U(k) be the largest power of the golden ratio § = 1-‘“2@ in
Parry's f-expansion of k, see [6]. Obviously, V' (k) = Llogﬂ k_|. For proving Conjecture 2, let us
intro-duce some special notation. By Zeckendorf's theorem, every nonnegative integer » can be

written uniquely as
n=F +-+F +F, k>->k>k, rz0, 2.2)

where &' > k" means that £’ > k" +2 [compare to (1.1)].

It will be convenient to have the sequences of Fibonacci and Lucas numbers extended for
negative indices. Let F,=0,F =1L F, ,=(-)"'F,_, and L,=2,L,=1,L, ,=(-1)"L,,
for positive integers 7. In this way, the definitions of x and v hold for all integers. We need the
following well-known lemmas which can be shown by induction.

Lemma 1: For integers m and n, we have L F, = (-1)"F,_, +F,

n+m-

Lemma 2: Let m and n be integers, n>m and m=n mod 2. Then

Theorem 1: For all positive integers k there exist uniquely determined integers ¢, ..., ¢, such that,
for all integers n,

kF;, = ZEwc,. 2.3)

with
Uk)=¢ <c, << <, =V (k) 2.4)

where U(k) 22 are even numbers defined by Ly;)_3 <k < Ly

el

J=-1
L,={}andL; ={n eN|L,,,<n<1,,,} for j>0. The proof will proceed by induction on .

If j=-1,ie, k=1, then the assertion is satisfied with 7 =1and ¢, =0. Suppose that (2.3)
and (2.4) hold for j >0 for each i with —-1<i < j—1 and all £ €l,. Then we have to show (2.3)
and (2.4) hold for all £ €l ;. Three cases will be distinguished.

Proof: We consider the following partition of the set of natural numbers N=U7__,L;, where

Case1: L,; ;<k<lL,;

From Lemma 2 with m=2j+1andby —F,_,,,; = F, ;, — F, .5, We have
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Kby = Frogy = Fgjua + (k= Ly, DF, +Fpppj . (2.5)

Since 1<k -1,y <I,;_,, by the induction hypothesis we obtain from (2.5),
7
kF, = E;-zj' - E1—2j+2 + Z F;H.c—‘. + Fn+2j—1 (2.6)
i=1
with ¢ 2 -2(j-1), ¢ <2(j-1 -1, and ¢, <---<¢;. Write (2.6) in the form
‘ P
kFy =B gy +F o= Fpgjin + ZFH;, ARLTTRE 2.7
i=1

If ¢, =-2j+2, thenby ¢, <c, we have —2j+4<c,. Letting r=7+1, ¢, =-2j,and ¢, =¢,, ...,
¢_1=¢, then ¢, <c,—4. Thus, ¢ <c¢, and, by the induction hypothesis, ¢, <---<c¢,_,. If
¢ >-2(j—1), then Lemma 2 applies for F e —F,_, ., since, by the induction hypothesis, ¢; is a

value of the even-valued function U. Hence, we get
i i
kE,=F, 5, + 2 Fs jeent > Fe + Fay (2.8)
e=1 i=1

with 7 = (¢ —2(j—1))/2. Representation (2.8) is already in the form (2.3). Letting 1 =7 +1 +2
and ¢, =-2j, ¢,=-2j+3,...,¢,,=¢-1L,6,,=G,..,¢ = G, and using ¢, =¢ +3, ¢, 2

Applying the induction hypothesis yields ¢;, , <---

t+1°

<c,_,. Taking ¢, =2j~1, (2.4) is established.

Case2: L, <k<L,j,
From Lemma 1 with m=2; we derive
Ky = Fy gyt (k= Ly))Fyt By 2.9)

c+2 (i=2,..,1), wegetq<c, < <g

Since 1<k — I, < L,,,, the induction hypothesis yields a representation of the form (2.3),
i
k=B g+ 2 B+ By, (2.10)
i=1 '

with ¢ >~2(j—1),¢ >2(j-1), and ¢, <---<<¢,. Letting 1=71+2,¢,=-2j,¢,=2j, and ¢, =
¢ (i=1,...,1), we obtain (2.4).
Case3: k=1L,

By Lemma 2 we have L, F, = F,_ , ,+F,,,;. Thus, we can proceed without using the induc-

tion hypothesis, obtaining (2.3) and (2.4) with ¢ =2,¢ =-2j,and ¢, = 2j.
Uniqueness of ¢, ..., ¢, is implied by the uniqueness of the Zeckendorf representation. [
Corollary 1: As an immediate consequence of Theorem 1, we get R(k) < U(k).
To prove Conjecture 2, we need an additional lemma.
Lemma 3: Let ¢, and ¢, be as in Theorem 1. Then ¢, = ¢, +2 if and only if
k>2L ;. (2.11)

—c; -
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Proof: By Theorem 1, we have 4F, = F,_, +F, +F, ,; thus, ¢, =¢;+2. Also by Theorem 1,
for k>35, we obtain ¢, >¢,+2 and ¢, = -2 for some integer j>1. From the proof of that
theorem, it is clear that L, <k>1, . If L, ;<k<L,, then ¢;>¢+2. If k=1, then
t=2and ¢,-¢ = 4j>2. If [,;<k<L,,, then 0<k-1I,;<L,; ;. Observing that (2.11) is
equivalent to k-1, > L,, 5, Theorem 1 yields U(k—L,;)>-2(j-1) if O<k—Ly; <Ly,
and Uk — Ly;) =-2(j - 1) if Ly;_yyy <k —Ly; < Ly ;_yy4;. Thus, we conclude that ¢, = -2 +2 if
and only if (2.11) holds. O

Theorem 2: R(1)=0, R(2)=R(3) =1, and for £ >4 we have

2j-1 ifL,, s <k<2L, ,,
R(k): ] . l’Z/ 3 Ll] 3
2j if2L,, s<k<L,

Proof: R(1) =0 is immediate from the definitions. By the identities 2F, = F,_, +F, ,, 3F, =
F,_,+F,,, forintegral n, and 2F = F, + F,, 3F = F; + F; we obtain R(2) >1 and R(3) =1. Since
2Fy=F and 3F; = F,, we get R(2)=R(3)=1. Let k >24. By Corollary 1, we have R(k) <U(k)
and f(kF)=tforn>U(k).

In the following, we distinguish two cases.

Case 1: 2L, ;<k<L,;,
Let n=U(k)—1. We show that in this case f(kF,) <t; hence, R(k) = U(k). Theorem 1 and
Lemma 3 yield

t t

K, = Fo+ it Y P, = Fy+ Y P, 212)
i=3 i=3

If n+ ¢y > 3, then the right-hand side of (2.12) is a Zeckendorf representation and f(kF,)=1¢—-1.

If n+c; =3, then let i, be the largest 7 > 2 such that ¢, =¢,_, +2; let i, =1 if such 7 does not exist.

Then the right-hand side of (2.12) can be written in the form of a Zeckendorf representation as

t
En+c,-o+1 + ZEH-C,-' (2.13)
i>ig
Thus, f(kF,)=1—i,+1.
Case2: L,; ;<k<2L,; 4

We show f(kF,)=1 provided that n=U(k) -1, however, f(kF,)=t-1 for n=U(k)-2.
Hence, we have R(k)=U(k)—-1. Let n=U(k)—1. As a consequence of Theorem 1, we get

K= F\ 43 Fyy = Fy+ Y Fov,.
i=2 i=2

Applying Lemma 3, we derive n+c, >2. Thus, the right-hand side is the Zeckendorf repre-
sentation of kF, and we obtain f(kF,)=1¢. Let n=U(k)—2. Theorem 1 yields

t t
Ky = Fyt Y B =Y By, (2.14)
i=2 i=2
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The right-hand side of (2.14) is the Zeckendorf representation of kF,; hence, f(kF,)=¢-1 and
the proof'is complete. O

Remark: To see that R(k) is the same as in Filipponi's Conjecture 2, note that g=2j-1 if
Ly, <k <Ly, andif F,+ F,_¢ (in the definition of v) can be replaced by 2L, ;.
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