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1. INTRODUCTION 

Let 
Skn(a,d) = ak + (a+df + (a + 2d? + ---+[a + (n-l)df, (1.1) 

where k and n are nonnegative integers with n > 0, and a and d are complex numbers with d & 0. 
We shall use the notation 

5 M = ^ B ( L l ) = l* + 2* + - + / i * . (1.2) 

Similarly, let T^n(a, d) be the alternating sum 

^ > , ^ ) = a ^ - ( a + ^ + ( a + 2 ^ - - - . + (-l)w-1[a + (w-l) jf ? (1.3) 

and let 
TKn = rM( l , 1) = \k -2k + 3k - . . . + (-!)-»„*. (1.4) 

It is, of course, well known that 
Sk,o = n; Sktl=n(n + l)/2; Ska = w(/i + l)(2w +1) / 6; 

and so on. Many different writers have worked on the problem of finding simple formulas for 
Skn, and many different methods have been used; see [3], [5], [6], [9], [10] for just a small sam-
pling of recent articles. The formulas for Tk n are certainly less well known. 

In the present paper we use generating functions to find new recurrences for Skf7(a, d) and 
Tk n(a,d). We also show how Skn(a,d) and Tk n(a,d) can be determined from Sk_ln(a,d) and 
Tk_lr2(a, d), respectively, and we show how Skn(a, d) and Tkn(ay d) can be expressed in terms of 
Bernoulli numbers. One of the main results is a new "lacunary" recurrence formula for Skn with 
gaps of 6 (Theorem 3.1); that is, we can use the formula to find Smn for m = 0,1,..., 5; then, using 
only Smn, we can find S6+mt„; then, using only Smn and S6+nhn, we can find Si2+m3„, and so on. 
There is a similar recurrence for Tk^n. 

There are several motivations for this paper: (1) A recent article by Wiener [10] dealt with 
equation (1.1) and generalized some well-known properties of Skt„. We show how the formulas 
of [10] can be derived very quickly and how they can be extended. (2) In a recent article by 
Howard [4], formulas were found which connected Bernoulli numbers to Tkt„. Evidently, the 
properties of Tk^n are not well known, so the results of [4] are a stimulus to study Tk and 
Tkt„(a, d) in some detail. (3) The new lacunary recurrences mentioned above are useful and easy 
to use, and (in the writer's opinion) they are of considerable interest. In Section 3 we illustrate 
the formulas by computing S6n, Sl2}„, and^g^; in Section 6 we compute TAn,Tl0n, mdT16n. 
(4) Perhaps the main purpose of the paper is to show how generating functions provide a simple, 
unified approach to the study of sums of powers of integers. The many, and often repetitious 
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articles on Skt„ that have appeared in the last twenty-five years seem to indicate a need for such a 
unified approach. 

2. RECURRENCES FOR SktH(a, d) 

We first note that by (1.1) the exponential generating function for Sk^n{a, d) is 
oo k (a+nd)x _ ax 

YiSKn(a,d)~ = eca
+e^d^ + -+e^"-^x^e

 A
 g . (2.1) 

k=0 K\ e - 1 
We can use (2.1) to prove the next two theorems in a very direct way. 

Theorem 2.1: Let k > 0 and n > 0. We have the following recurrences for Sktn(a, d): 

^ p + 1lrffe+1-^;. w(a3 rf) = (a + «rf)fe+l -afc+l, (2.2) 
j=Q\ J J 

i ( - i y [ * t 1 ^ k + W 5 y > B ( a > r f ) = (_ i )* [ ( a + w /_d)*+i_(a_d)*-"] . (2.3) 

Proof: From (2.1) we have 

k=0 

V 
/=1 J ! k=0 K- ;=0 J' 

If we exaimine both sides of (2.4) and equate coefficients of xk+l I {k + 1)!, we have (2.2). Now if 
we replace x by -x in (2.1), we have, after simplification, 

00 yk pid~a)x _ p{d-a-nd)x 

^tSk,n(a,d)X-=e- £- . (2.5) 
Multiplying both sides of (2.5) by e^-l and equating coefficients of xk+l /(& + !)!, we have 
(2.3). This completes the proof. 

Formulas (2.2) and (2.3) generalize known formulas for a = d = 1 [8, p. 159], We note that 
(2.2) was found by Wiener [10]; see also [2, p. 169]. Bachmann [1, p. 28] found a recurrence for 
Sk^n{a, d) involving only S;>_i for j = 1,..., k. 

We now add (2.2) and (2.3) to obtain the next theorem. 

Theorem 2.2: For k = 1,2,3,..., we have 

2%{lf\^k'2%,n(^d) = (a + ndfk-(a + nd-dfk+(a-dfk - a 2 \ 

and for k - 2,3,..., we have 
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k-1 
2/r-l „2fc-l 

Theorem 2.2 can be compared to results of Wiener [10] and Riordan [8, p. 160] 

3. RECURRENCES WITH INDICES 6K + M 

We now show how to find formulas of the type (2.2) where the index j varies only over 
integers of the form 6k+ m, with 0<m<5. To the writer's knowledge, these formulas are new. 
After stating Theorem 3.1 and its corollary, we give some applications; the proof of Theorem 3.1 
is given at the end of this section. 

Let 6 be the complex number - y + ~-i, so 

03 = l and <92+ 0+1 = 0, (3.1) 

and define the sequence {Wj} in the following way: 

Wj = l + (-iy(0* + 6P-J) for/ = 0,1,..., 5, 
•WJ^W^J for/ = 0,±l,±2,.. . . 

For example, w_x =w5=2. The values of M> . for/ = 0,1,..., 5 are given in the following table: 

(3.2) 

j 

WJ 

0 

3 

1 

2 

2 

0 

3 

-1 

4 

0 

5 

2 
(3.3) 

Theorem 3.1 Let Wj be defined by (3.2) and (3.3). Then, for m = 0,1,..., 5 and n > 0, k > 0, we 
have: 

Corollary: For m - 0,1,..., 5 and n > 0, k > 0, we have: 

y 3 J"W,p„- 2 ^ 6j+m J\j+m,n +
 6 L, \ j J .w nJ 

6 %K J ) ""} 

The corollary gives us an easy way to write Skn as a polynomial in n of degree k + \. In 
particular, we have for m = 0,1,..., 5: 

3 K» = *U j )^jnJ 
~6£l J 

Using the corollary, we easily compute S0n=n and 
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5K—£i(5M 
By (3.2) and (3.3), the numbers w_j are easy to find. We have w_j - 2 forj = 1,5,7; w_j = 0 for 
7 = 2 and 4; w_j = -1 for7 = 3; w_7- = 3 for7 = 6. Thus, we have 

1 - l j , 1 5 , 1 6 , 1 7 
M 42 6 2 2 7 

Continuing in the same way, we have 

Sn,n = -n-ll*)s6,n+lt{ljy-j«J, 15^ 
3 M ' 

SO 
691 _ 5 , 33 < , 22 , 11 9 , „ , 1 12 , 1 

n,n 2 ? 3 0 3 1 0 ? 6 2 - 1 3 -1̂2,« = -^3r^rW + - « -—rr +—n' —Trf + w + - « + — « . 

It is easy to keep going: 

which gives 
vK— -̂̂ ^^IGV. 

c 43867 3617 3 „ , . s 23494 7 1105 9 663 „ 
J18,n 798 10 35 3 5 

~ , 13 3 4 15 3 17 1 i« 1 19 

5 2 2 19 
Another application of Theorem 3.1, involving Bernoulli numbers, is given in Section 4. 
Proof ofTheorem 3.1: Let 

(a+nd)x _ ax oo k 

*<*) = pdx " = ^ 5 t - " ( a ' ^ T P (3-4) 

and define ^ (x) , ^(x), and^(x) as follows: 
1 °° r3 f c 

j fc=0 VJ / C ) • 

4 0 0 = ̂ [0*00 + ̂ ( & ) + m#x)] = X S3t+i>> d) -prr-zr:, (3.6) 

4 (x ) = i [^(x) + Mite) + &A{#x)\ = £ ^ + 2 > n ( a , ^ - ^ — - (3.7) 

The equalities on the extreme right of (3.5), (3.6), and (3.7) follow from (3.1) and (3.4). Using 
(3.4) and the equalities on the extreme left of (3.5), (3.6), and (3.7), we can write 

AJx)-~r 0» = 0,1,2), 
$LJm 
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with D0=D^D2= (e™ - 1 ) 0 * * - l)(eff ** - 1 ) . Using (3.1), it is easy to compute 
v6fc+3 

j6k+3 x 

A = A = A = 6£^ 
The formulas for N0, Nl9 and N2 are more complicated, but they are easy to work out from (3.4), 
(3.5), (3.6), and (3.7). We first note that, for m = 0,1,2, we have 

i oo 3k+m 
4»(*) = \[A(x) + 6P-mA(0c) + (TA(02x)] = £ £ (a, < / ) - £ _ _ 3 jw> (3£+w)! 

Thus, we have: 

Nm = (e
{a+nd)x - emXe~dx ~ ed6x - ed°2x +1) 

+ 0i-m(e{a+nd)6x -eadx){e-dex -e^ -ed02x + 1) (3.8) 

+ ff"(e
i-a+"d)e2x - ea02x)(e~d02x - ed0x - e * +1) 

We now multiply, regroup, and expand the terms in (3.8). For example, we have 

e(a+r,d-d)x + 03-n,e(a+„d-d)<)X + ^(a+ml-d^x = £ ( a + „ < / _ < / y (1 + tf-™+! + ffn+lj^ *?_ 

J=0 J-

» „ . v 3 / + m 
= 3 Y (a+nd - d)3j+m — . 

Regrouping and expanding the other terms in (3.8), we have, for m = 0,l, and 2 , 

-Nm = 'fj[(a + nd+d)3J+m + (a+nd)3J+m + (a + nd- d)3J+m -{a+dfj+m - a3J+m 

3 , - o 
3J+m oo 3 / oo v3y+w 

-(a-d)3j+m]-f. --3^d3j •^—•Z[(a+,idfJ+m -a3j+m]— 
(V+m)\ p0 (3y)! p0

LK J(3j + m)r 
Since 

^.SW^pi^i*" (3-9) 
we can equate coefficients of x3k+m /(3k +m)\ in (3.9) and state the following: For m = 0 ,1 ,2 , 

= (a + nd + d)3k+m + (a + nd)3k+m + (a+nd-d)3k+m-(a + d)3k+m (3.10) 

_ a^+rn _ ( a _ d)3k+m _ 3 ^ f3k + m\ [(fl + ^ ) 3 y + W _ JJ+mypk-3j ^ 

At this point we observe how the sums in (3.10) can be simplified. By using properties of 6 and 
the binomial theorem, we see that 
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= (d + a + ndfk+m + e2m{d+a6 + nd0fk+m + ff"(d+a02 + nd02fk+m 

= (d + a + ndfk+m + ̂ [-dO2 + {(a-d) + nd}0fk+m + 0m[-d$ + {(a-d) + nd}61fk+m 

= (d + a + ndfk+m + J^(3k +m\-l)k+m-Jd3k+m-J(ff"-J+e2m+J)(a-d + nd)J 

j=0 \ J J 

= (d + a + nd)3k+m +3J^(3k + m\-l)kd3k+m-J(-l + wm_j)(a-d + ndy. 
j=o y J

 J 
(3.11) 

We substitute (3.11) [and also (3.11) with n = 0] into (3.10), and we consider the two cases of A; 
even and k odd. Then using the binomial theorem and the fact that w • = 0 when j - 6k + m + 2, 
we can easily simplify (3.10) to get Theorem 3.1. This completes the proof. 

4. Shn{a, d) IN TERMS OF BERNOULLI NUMBERS 

The Bernoulli polynomial Bk(x) may be defined by means of the generating function 

7b=£*wir (41) 
k=Q 

When z = 0, we have the ordinary Bernoulli number Bk, i.e., Bk(Q) = Bk. It is well known [2, pp. 
48-49] that B0 = 1, Bl = - } , B2 = | , and B2m+l = 0 for m > 0. It follows from (4.1) that 

*,«=£(*>,-/. 
Comparing (4.1) and (1.2), we see 

k + l 

;=o 

5 * + i l ;7 + " | - 5 * + i V' (? 

(4.2) 

(4.3) 

Now, for fixed a and d, suppose we write Sk^n{a, d) as a polynomial in (a - d + wrf); i.e., 

Sk,n(P9 d) = ̂ ( a , </) + [* + ( « - l ¥ f 

By (4.2) and (4.3), we have the following result. 

(4.4) 

Theorem 4.1: If Sktn(a,d) is written as a polynomial in (a-d + nd) and vkj is defined by (4.4) 
for j = 1,2,...,Jfc + 1, then 

'-ITI(*;I>,"'*~' (i^s*-»-vfr ,- = 

Vk,k - 2 ' VA:,fc+l : 
1 

d(* + l) ' ifc + 1 
Bk+i~Bk+\ 

a 
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When a = d = 1, Theorem 4.1 gives the well-known result [2, pp. 154-55]: 

Sk,„ = SKn{\, 1) = nk +j^I,[kj l)Bk+l-jnj. 

Here, we can give another application of Theorem 3.1. Since vktl=Bk for k>\, and 
a = d = 1, we see from the corollary to Theorem 3.1 that, for m = 0,..., 5 and 6k + m > 1, 

(6k+m + 3)„ \^f6k + m-h3^J? , 1 ,„ , r ^ iA ~ 
[ 3 JB6k+m = -L( 6j + m J56/+« + g(6* + w + 3)w«-i- (4-5) 

Formula (4.5) is a lacunary recurrence for the Bernoulli numbers that is equivalent to a formula of 
Ramanujan [7, pp. 3-4]. See also [8, pp. 136-37]. 

5. FINDING SkfH(a, d) FROM Sk_hn(a, d) 

Several writers, like Khan [6], have pointed out that when a = d = 1, if we know just Sk_ln, 
we can evaluate SktTl. Using (2.1), it is easy to prove this and to generalize it. First of all, we can 
use mathematical induction on (2.2) to prove that Sk^n{a, d) is a polynomial in n of degree k +1, 
with constant term equal to 0. (That also follows from Section 4.) Thus, for fixed a and d, we 
can write 

Sk9„(a, d) = ckln + ckan2 + • • • + ckMlnk+l. (5.1) 

Theorem 5.1: For fixed a and d, let ckJ be defined by (5.1) for j = 1,..., k +1. Then, for k > 1, 
we have 

kd 
,,_! C/ = 2,.. . ,* + l), (5.2) ck,j ~ j ck-\, 

Ck,l~a ~Ck,2~Ck,3 Ck,k+l- ( ^ ) 

Proof: Define the polynomial Pk{z) by means of the generating function 
oo k Ja+zd)x _ ax 

I^)fr e* 7 ' (54) 
k=o Kl e -i 

so Pk(n) - Skn(a, d). This implies that 
Pk(z) = ckAz + ckaz2 + ...+cKk+lzk+l (5.5) 

for all positive integers z, and hence for all complex numbers z. Now we differentiate both sides 
of (5.4) with respect to z to obtain 

^ D„ , xk dxe{a+zd^x dx(e^a+zd)x - em) dxe™ 
1^{Z)^-^T^ e--l V ^ P (56) 

We recall the definition of the Bernoulli polynomials, formula (4.1), and we see that 

^-hd*ldm (57) 
e k=0 
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and we note that Bk(j) is independent of z. From (5.4), (5.6), and (5.7), we have 

£wrf„^%+iHffe- (58> 
Equating coefficients of xk I k\ in (5.8), we have 

P{{z) = dkPUz)+dkBk{^. (5.9) 

Thus, by using (5.5) and equating coefficients of zj~l in (5.9), we have 

ckj=— ^-w-i 0" = 2,.. . ,* + l). 
J 

Also, by (5.1) and the fact that Sktl(a, d) = ah, we have 

dkBk ( J H = cKl = ak- cka -ck§3 ckMl, 

and the proof is complete. 
Thus, if we know the coefficients of Sk_^n(a,d), we can determine the coefficients ckj of 

Sk,n(a> d) for y = 2,..., A + 1 from (5.2) and then compute ckfl from (5.3). For example, 

so, by (5.2) and (5.3), we have c u = ̂ c0l = y, and c u = a- |-; that is, 

^>, r f ) -cu« + c u « 2 -L - -J« + -«2. (5.10) 

Equivalently, by (5.9), we can integrate to find Pk(z): 

Pk{z)^dk\Pk^{z)dz + d%[^z9 (5.11) 

[The dz in (5.11) should not be confused with the complex variable d.] The constant of integra-
tion is 0, and ckl = dk Bk(j) can be found by means of (5.3). When a = d = 1 and k > 1, Bk{j) is 
the A:111 Bernoulli number. We illustrate (5.11) by finding S2t„(a9d). From (5.10) and (5.11) we 
have, after integrating Sln(a, d) with respect to n and multiplying by 3d, 

so by (5.3) we have 

( d2\ 2 d2 3 

S2>II(a,d) = W-ad + 2 , * ̂
 / 
«+ ad w2+—w3. 
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6. RECURRENCES FOR TkfH(a, d) 

Let Tktn(a, d) be defined by (1.3), with k > 0, n > 0, and d * 0. This type of sum is discussed 
briefly by Bachmann [1, pp. 27-29] and Turner [9]. We note that Tk n(a, d) can be expressed in 
terms of Skn(a, d) in the following ways: 

Tk,2n+M, d) = SKn+1(a, 2d)-SkJa+d, 2d), 
Tk,2„(a, d) = SkJa, 2d) - SK„(a+d, 2d). 

Also, \fa = d = l, then 
5 ,2»-^ ,2« _ 2 Skt„, (6.1) 

which makes some of the formulas for TktJl trivial in light of the results of Sections 1-5. 
In the remainder of the paper, we find formulas for Tk n(a, d) that correspond to the ones for 

Skn(a, d). The essential tool is the generating function 

^Ua,d)^ = eax~e^+^ + ---+(-irVa+"d-^ = { l) \ +e . (6.2) 
k=0 fc\ e + 1 

The following three theorems are analogs of Theorems 2.1, 2.2, and 3.1, and they are proved 
in exactly the same way as those earlier theorems. The proofs, which use (6.2) instead of (2.1), 
are omitted. 

Theorem 6.1: We have the following two recurrences for Tk n(a, d): For k > 1, n > 0, 

2Tk+lJa, d) + t(k] ^d^-'TjJa, d) = (-l)""1^+nd)M +ak+\ (6.3) 

2Tk+1Ja, d) + £ ( * + iy-d)M-JTJtn{a, d) = (-l)"+\a + nd-d)M + (a-d)k+1. (6.4) 

Formula (6.3) generalizes a formula of Turner [9]. 

Theorem 6.2: For k = 1,2,3,..., we have 

^k2jl)dlk-2i-%j^d) 

= {-\)"-\a+nd)2k-x + (-\)"{a + nd-d)2k-1 -{a-d)2k-1 +alk~\ 
and 

= (-l)n-\a+nd)2k + (-\)n(a+nd-d)2k -(a-d)2k +a2k. 

Theorem 6.3: Let Wj be defined by (3.2) and (3.3). Then, for m = 0,1,..., 5, and n > 0, k > 0, we 
have 
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8T6k+m,n(a, d) = -6Z{fjtZy*-6%+m,„(a, d) 

+ I \^k^myk"m~^m^{-\r\a-d + nd)U(a-dy] 

+ 4[(-l)"-\a-d+nd)6k+m + (a - d)6k+m]. 

Corollary: Let n > 0, k > 0. For m = 0,1,..., 5, and m and k not both 0, we have 

+4(-i)w-v^w+[i+(-ir i ]w; 

Note that, for m = 1,2,..., 5, we have 
m-\ 

SO 

m-\f \ 

srmj„=(-ir'ijJJ^,-/+4(-iri»m
+[i+(-ir']w, 

To illustrate Theorem 6.3, we first calculate \ n \ 

Then 

which gives us 

^o,„ = -6(4°) \n + (-I)""115°)^/ + (-D-1^10, 

Continuing in the same way, we have 

which gives us 

T16,„=(-i)-'i -" - ' ( - 9 2 9 5 6 9 „ + 764540»3 - 377286»5 + 8866O/17 

-12155«9 + 1092nn-70«13+4n15 + -H16 
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Tkyn(a, d) W TERMS OF GENOCCHI NUMBERS 

The Euler polynomial Ek(z) may be defined by the generating function [2, pp. 48-49] 
,XZ oo 

For z = 1, we have 

2e V r / \ -

4 ( I ) = 2 2 ^ - 1 ) ^ = _ _ I _ G M _ 

(7.1) 

(7.2) 

where i^+1 is a Bernoulli number and Gk+l is called a Genocchi number [2, p. 49]. The Genocchi 
numbers are integers such that G2m+l = 0 for m>0; the first few are G0 = 0, Gx - 1, G2 = - 1 , 
G4 = 1, G6 = - 3 . It follows from (7.1) that 

^ ) = £ Q ^ ' . 
Comparing (7.1) and (6.2), we see that 

Tk,M,d) 
dk 

(-ir^if+»+^f 

(7.3) 

(7.4) 

By (7.3) and (7.4), we have the following result. For fixed a and d, if we write Tkn{a,d) as a 
polynomial in (a-d+nd), i.e., 

7M(a, d) = Tk>n_x(a, d) + (a-d + nd)k 

= ukf0+ ukl(a -d+nd) + uk}2(a-d+ndf + "-+ukk(a-d + nd)k, 

then we have explicit formulas for the coefficients ukj in terms of Genocchi numbers. 

(7.5) 

Theorem 7.1: If Tkn{a,d) is written as a polynomial in {a-d+nd) and ukj is defined by (7.5) 
for 7 = 0,1,..., k, then 

"M " 2(* +1) k+l 2 k [dj "k'k ~ ~T 
n-l 

When a = d = l,we have 

When n is even, (7.6) follows from (6.1) and the formulas in Section 6 [1, p. 27]. 

For example, T3 = l3 - 23 + • • • + (- lyW 

2 4 2 2 3 8 4 8 V / J 
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An application of Theorem 6.3 that is analogous to (4.5) is the following. If n is odd and a = 
d = 1, by Theorem 7.1 we have uk^ - -Gh+l I (k +1). Thus, by Theorems 7.1 and 6.3 we have, 
for /if = 1,2, . . . ,5, 

which is equivalent to a formula of Ramanujan [7, p. 12]. 

8e FINDING TM(fl, if) FROM Ti^Cfl, if) 

We proceed as we did for Sktn(a,d). By using induction on (6.3), we can prove that 
Tktfl(a,d) is a polynomial in n of degree k, and the constant term is 0 if n is even. That also 
follows from the results of Section 7. Thus, for fixed a and d, we can write 

Tk,n(a7d) = \ (8.1) 
{hKQ + hK1n + >-+hKkn (n odd). 

Using the generating function (6.2), we prove the next theorem just as we proved Theorem 5.1. 

Theorem 8.1: For fixed a and d, let tkJ andhkJ be defined by (8.1) for j = 0,..., &. Then for 
k > 1 we have . 

' * , / = — **-w-i (7 = 2,...,*); \ y = — V i , y _ i (7 = 2,...,/:); 

Thus, if we know Tk_ln(a, d), we can use Theorem 8.1 to find Tkt„(a9 d). For example, 

|0 (n even), i-(d 12)n (w even), 
2S>,rf) = | 1 ( w o d d ) . ^ a > ^ = {(a_j/2) + (rf/2)« (/i odd). 

,2 

\ l = -
fcf Jk 

Then, for n even, we have T2^(a, d) = f2jlw 4- /2>2« , with 

Thus, 

r2)2 = tfu = -^ 2 /2; r2?1 - - [ a 2 - ( a + d)2] + d2 = -ad + d2 12. 

T2^(a, d) = (-d2 - ad)n - - d V (w even). 

For n odd, 2JfW(a, d) = \ 0 + \ i w + \2w2> w^*1 

2̂,2 = rf\i = d2 /2; h2A = f2jl + 2dfelf0 = ad-d2 /2; /i2)0 = a2 - / i 2 J - / i 2 > 2 = a2 -arf. 
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Thus, 
T2n(a, d) = (a2 -ad) + (ad--dAn + -d2n2 (n odd). 

Equivalently, by Theorem 8.1, we can integrate to find Skn{a, d): 

f kdk (a\ 
Sk,n(a^d) = kd\ Sk-iMd)^—YEk~\d)n+hk(ri^ 

where E^^j) can be found by means of Theorem 8.1, and 

h t„\ - 1° (n e v e n) ' 
hk{n)-\\,o = ak-Ki-K2-'''-Kk ("odd). 

9. FINAL COMMENTS 

In summary, we have used generating functions to prove and generalize some of the basic 
formulas for sums of powers of integers. In particular, we have used the generating function 
technique to find: recurrence relations for Skn{a,d) and Tk n(a,d); explicit formulas (involving 
Bernoulli numbers) for Sk n(a,d) and Tkn(a,d) if they are written as polynomials in n; methods 
for finding Skn(a, d) and Tk n(a, d) from Sk_ln(a, d) and Tk_ln(a, d). Some of the results are old 
(and scattered in the literature), and most of the proofs are straightforward. However, the writer 
believes that many of the generalizations are new, and he believes that Theorems 3.1 and 6.1 give 
us new recurrence formulas that are of interest. 
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