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1. INTRODUCTION 

Given any function / defined modulo m, we can consider the digraph that has the residues 
modulo m as vertices and a directed edge (a, b) if and only if f(a) = h (mod m). This digraph can 
be thought of as a geometric representation of all the sequences generated by iterating /modulo 
m. The digraph associated with squaring modulo p, a prime, has been studied in [1]. In that 
paper the cycle lengths and the number of cycles appearing were characterized. The structure of 
the trees attached to cycle elements was also completely described. Our paper will generalize 
those results to the digraph associated with the function xk modulo a prime/? with k any positive 
integer. Since zero is an isolated cycle for all p and k, we will consider the digraph generated by 
the nonzero residues. Hence, the vertex set of the digraph is equal to Z*. We will let Gk denote 
the digraph on the nonzero residues modulop with edges given by xk (mod/?). For example, G5

3
3 

is shown in Figure 1 and G^ is shown in Figure 2. Note that, when p = 2, Gk consists of the 
vertex 1 in a loop. Thus, we need only consider Gk when/? is an odd prime. We will use/? to 
denote an odd prime throughout this paper. 

Elementary results about these digraphs are described in Section 2. In particular, we see that 
each component contains a single cycle and we can determine when there are noncycle vertices. 
Section 3 characterizes the cycle lengths that appear. Section 4 explores the relationship of geo-
metric subsets of the digraph to subgroups of the group of units modulo/?. Section 5 considers 
some special cases where long cycles occur. Section 6 returns to the basic structure of the 
digraph and shows that all the forests appearing must be isomorphic and characterizes their 
heights. Section 7 explores the simplifications of the structures that appear when k is prime. 

We begin by enumerating six well-known elementary theorems which will be used. Proofs 
can be found in standard texts. 

Theorem 1: If a £ 0, there are 0 or gcd(£, /?-1) solutions to xk =a (mod/?). 

Proof: See [3], p. 47. D 

Theorem 2: If d is a positive integer such that d\p-l, then there are exactly (/>{d) incongruent 
residues of order d modulo/?. 

Proof: See [3], p. 48. D 
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FIGURE 2. The Digraph of G^ 

Theorem 3: If«is a positive integer, then 

d\n,d>0 

Proof: See [5], p. 83. D 

Theorem 4: If a is an integer such that gcd(a, m) = 1 and / is a positive integer, then 
, / ordwa 

ordwa = w 

gcd(i, ordma) 
PWw/> See [5], p. 132. D 

Theorem 5: A primitive root modulo rn exists if and only if m is of the form 2, 4, / / , or 2/?", 
where/? is an odd prime. 

Proof: See [3], p. 49. D 

Theorem 6: If a and b are elements of Z* such that a = ordpa, (5 = ordpft, and gcd(a, /?) = 1, 
then ordpab = a(5. 

Proof: See [4], p. 46. D 
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2. BASIC PROPERTIES 

The following lemmas are easy to prove but fundamental to the understanding of the digraph 
structure of Gk. We will see that, for all Gp, each graph component contains a unique cycle 
which may have forest structures attached to it. 

Lemma 7: The outdegree of any vertex in Gk
p is one. 

Proof: The function xk (mod/?) maps the vertex a to ak and only ak. • 

Lemma 8: Given any element in Gp, repeated iteration of xk (mod/?) will eventually lead to a 
cycle. 

Proof: Because there are /?-1 vertices in Gk iterating xk (mod/?) must eventually produce 
a repeated value. • 

Lemma 9: Every component of Gk contains exactly one cycle. 

Proof: Suppose a component has more than one cycle; then, somewhere along the 
undirected path connecting any two cycles, there exists a vertex with outdegree at least 2, which 
is impossible. • 

Lemma 10: The set of noncycle vertices leading to a fixed cycle vertex forms a forest. 

Proof: Since each component contains exactly one cycle, the vertices leading to a cycle 
vertex cannot contain a cycle; thus, they are a forest. D 

Lemma 11: The indegree of any vertex in Gk is 0 or gcd(£, p -1). 

Proof: This result is an immediate application of Theorem 1. D 

Lemma 12: Every component of Gk is cyclical if and only if gcd(&, /?-!) = !. 

Proof: (=>) If all digraph components are cyclical both the indegree and outdegree are one, 
which implies from Lemma 11 that gcd(£, p -1) = 1. 

(<=) Conversely, if gcd(&, /? -1) = 1, the indegree of every vertex is 0 or 1. If some compo-
nent were not cyclical, there would exist a cycle vertex with indegree > 2, a contradiction. • 

For example, each component of G5
3
3 is cyclical because gcd(3,52) = 1; this is apparent in 

Figure 1. Likewise, G*x has vertices outside the cycles because gcd(4,40) = 4 (see Figure 2). We 
will refer to a child of a vertex a as a vertex v that satisfies the equation vk = a (mod /?). These 
are the predecessors of a in Gk. Note that our child vertices are children in the sense of the forest 
structure but not in the standard sense of direction. Predecessors that are not in a cycle will be 
called noncycle children. For example, in G^, 37 has the three noncycle children 8, 31, and 33. 

Lemma 13: Any cycle vertex, c, has gcd(£, p -1) - 1 noncycle children. 

Proof: From Lemma 11, the indegree of c is 0 or gcd(A:, p-1). Since c is a cycle vertex, the 
indegree is not zero but gcd(&, /? -1). The number of noncycle children is gcd(£, / ? - ! ) - ! . D 
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Above we saw some of the basic results about Gk. Notice that if we fix k and vary p the 
number of vertices changes and infinitely many different digraphs result. However, ifp is fixed, 
only finitely many distinct digraphs result as k varies. The next theorem identifies the powers that 
result in identical digraphs. 

Theorem 14: \ = k2 (mod p -1 ) if and only if Gk
p

l = Gk
p

2. 

Proof: (=>) Suppose kx = k2 (modp -1) and without loss of generality kx>k2. If a is any 
vertex in the reduced residue set, ordpa\(p-l)\(kl-k2), so akl~kl = 1 implies akl = akl (modp). 
Hence, G£ = G*2. 

(<=) Suppose Gp
l = Gk

p
2, and assume kx>k2. Then ak{ = akl (modp) implies or&pa\{kx-k2) 

for all vertices a. So (p -1) \(kx - k2)7 and the conclusion follows. D 
The 12 different digraphs for Gk

3 are shown in Figure 3. Notice that some have only cycles 
and some have forest structures. This theorem gives a condition for equality of digraphs, but does 
not settle the question of when two digraphs can be isomorphic for different values of k. For 
example, G^ ^ G*x but G-^« G\x. 
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3. CHARACTERIZING CYCLES 

When considering the cycle structure of Gp, it is convenient to factor p-1 as wt, where / is 
the largest factor of p -1 relatively prime to k. So gcd(£, t) = l and gcd(V, r) = 1. For example, 
if p = 41 and £ = 6, then /? - 1 = 235, so w = 8 and f = 5. Similarly, if /? = 47 and £ = 4, then 
w = 2 and t = 23; also, if /? = 19 and & = 6, then w = 18 and t = 1. In all the theorems below, we 
will be considering the digraph Gp with /? - 1 = wt as described. 

Theorem 15: The vertex c is a cycle vertex if and only if ordpc\t. 

Proof: (=>) Since c is in a cycle there exists some x > 1 such that ck =c and thus ck ~l = 1 
(mod /?). Hence, ord c | £ * - l , which implies that gcd(ordpc, A) = 1, so gcd(ordy;, w) = 1 also. 
We know that ordpc\p-l = wt, and so ord^c must divide t. 

(<=) Suppose c eGp and ord pc\t; therefore, gcd^rd^c, k) = l. On repeated iteration, c must 
eventually end up in a cycle. If y is the number of steps to reach the cycle and x is the cycle 
length, then c H ( r _ 1 ) = 1 (mod p). Therefore, ordpc\ky(kx-I), but since gcd(ordy:,k) = 1, 
ordpc\kx - 1 . Hence, ck =c (mod/?), which implies that c is a cycle vertex. • 

Corollary 16: There are / vertices in cycles. 

Proof: From Theorem 15, the total number of cycle vertices is lLd\tN(d), where N(d) is 
the number of elements of order d (mod/?). Theorems 2 and 3 imply that this is /. D 

Theorem 17: Vertices in the same cycle have the same order (mod/?). 

Proof: Assume a and b are in the same cycle. Hence, there exists an e such that ae = b 
(mod p). Let a = ordpa and p- ordpb. It follows that ba = aea = 1 (mod /?) and thus /?|cr. 
Similarly, a\j3; hence, the orders are equal. D 
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Theorem 17 shows that the order (mod/?) of vertices in the same cycle are equal. Hence, the 
notion of the order of a cycle is well defined. We now look at the relationship between the order 
of a cycle and its length. 

Theorem 18: Let x be the length of a cycle of order d (mod/?), then kx -1 is the smallest number 
of the form kn - 1 divisible by d. 

Proof: Let c be a vertex in the cycle. Since the cycle is of length x, ch ~l = 1 (mod/?). It fol-
lows that d-ovdpc divides kx - 1 . If ordpc|£*-l for some s<x, then ck* =c , a contradic-
tion. • 

Theorem 18 shows that the length of a cycle depends entirely on its order. If we let £(d) 
denote the length of cycles with order d, we get the following theorem. 

Theorem 19: Let a, b, and d be orders of cycles in Gk
p. Then: 

(i) £(d) = orddk. 
(ii) There are </){d) I £(d) cycles of order d. 

(Hi) £(lcm(a,b)) = \cm(£(a\ £(b)). 
(iv) The longest cycle length is £(t) = ordfk. 

Proof: 
(i) By Theorem 18, £(d) = min{« \d\kn-l}; hence, £(d) = orddk. 

(ii) By Theorem 2, there are (j)(d) elements of order d, and there are £(d) in each cycle 
by(i), hence the result. 

(Hi a) By (i), km = 1 (mod a) and ^ E 1 (mod h); thus, £»<»(*<«>.'<*>) s i (mod a) and 
l̂cmWaxW) s ! ( m o d by I t f o l l o w s t h a t jfcM^W s ! ( m o d i c m ( a 3 £)). Therefore, 

£(lcm(a, b)) \lcm(£(a), £(b)). 
(iiib) We know that ki(-lcm(a>b» s l(mod lcm(a,Z>)). Therefore, jfc'O"*'-*)) = 1 (mod a) and 

^(ian(a>ft))sl ^m o d ^ T h m ? ^(a)|^(icm(a> j)) and *(&)K(lcm(a, b)), which implies 
that lcm(^(a), £(h))\£(lcm(a, b)). 

Putting (iii.a) and (iii.b) together gives £(lcm(a, b)) = lcm(£(a), £(b)). 
(iv) All orders of cycles divide t and if d\t then £(t) = £(lcm(t, d)) = lcm(£(t), £(d))9 which 

implies £(d)\£(t). Thus, £(0 is the maximal cycle length. • 

We are now in a position to identify the number of cycles of every length appearing in the 
digraph of Gp. For example, consider G$3 (Fig. 1); in this case /?-1 = 52 so w = 1 and t = 52. 
The possible orders of the cycle elements are the divisors oft: 1, 2, 4, 13, 26, and 52. There are 
^(52) = 24 elements of order 52, and these 24 elements are in cycles of length ^(52) = ord523 = 6, 
contributing four cycles of length 6. Similarly, the elements of order 26 appear in 4 cycles of 
length 3; and those of order 13 are in 4 cycles of length 3. There are 2 elements of order 4 in one 
cycle and two cycles of length one with orders 1 and 2. Table 1 gives some details about cycles in 
Gk for selected p and k. 
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TABLE 1. Cycle Lengths in Gk 

_ 

1 p 

41 

43 

47 

53 

2 

d 

1 
5 

1 
3 
7 

21 

1 
23 

1 
13 

d (d) 

1 
4 

1 
2 
3 
6 

1 
11 

1 
12 

# 

iH 
i 

i j 
i | 
2 j 
2 

1 
2 

1 
1 

3 , 

d 

1 
2 
4 
5 
8 

10 
20 
40 

1 
2 
7 

14 

1 
2 

23 
46 

1 
2. 
4 

13 
26 
52 

« (d) 

1 
1 
2 
4 
2 
4 
4 
4 

1 
1 
6 
6 

1 
1 

11 
11 

1 
1 
2 
3 
3 
6 

# 

1 
1 1 
1 
1 j 
2 
1 j 
2 
4 

1 j 
1 
1 
1 

1 
1 
2 
2 

1 
1 
1 
4 
4 
4 

4 j 

d 

1 
5 

1 
3 
7 

21 

1 
23 

1 
13 

« (d) 

1 
2 

1 
1 
3 
3 

1 
11 

1 
6 

# j 

1 j 
2 

1 j 
2 i 
2 j 
4 

1 
2 

1 
2 

5 

d 

1 
2 
4 
8 

1 
2 
3 
6 
7 

14 
21 
42 

1 
2 

23 
46 

1 
2 
4 

13 
26 
52 

« (d) 

1 
1 
1 
2 

1 
1 
2 
2 
6 
6 
6 
6 

1 
1 

22 
22 

1" 
1 
1 
4 
4 
4 

# 

1 
1 
2 
2 

1 
1 
1 
1 
1 
1 
2 
2 

1 
1 
1 
1 

1 
1 
2 
3 
3 
6 

6 

d 

1 
5 

1 
7 

1 
23 

1 
13 

« (d) 

1 
1 

1 
2 

1 
11 

1 
12 

# 

1 1 
4 

1 1 
3 

1 
2 

1 
1 

4. SUBGROUPS OF Z* IN G* 

We now consider orders of elements throughout Gp. We will be able to associate elements 
of various orders with subgroups of Z*, which allows for the identification of certain subgroups 
of Z* with geometric subsets of the digraph. In later sections we will return to characterizing the 
cycle and forest structure of these digraphs. 

Lemma 20: If Hd is the set of residues with orders dividing d, d>l, then Hd is a cyclic sub-
group of Z*. 

Proof: Since Z* is a finite cyclic group, we need only show that Hd is nonempty and closed 
under multiplication. Clearly Hd is not empty because it has the identity. To show closure, 
suppose that a,b sHd and let a = ordpa and J3 = ordpb. Since (ab)lca^at^ = 1 (mod p), ordpab 
divides lcm(a, /?) which in turn divides d. Therefore, Hd is a subgroup of Z*. • 

For instance, if we consider the group Z^, the elements of order 1 and 2 form the subgroup 
H2, while H10 contains those elements of order 1, 2, 5, and 10. 

We will now introduce a notation for the forest originating from any given cycle vertex. Let 
F" represent the set of vertices in the nth level of the forest originating from the cycle vertex c. 
Of course, Fc

n depends on Gk. For example, in G*x (Fig. 2), F/6 = {2,23, 39} and F?6 = {7,19, 
22,34}. Similarly, Fn refers to the vertices in the rfi level of all forests and Fc refers to all forest 
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vertices associated with the cycle vertex c at all levels n > 1. Note that the cycle vertices are not a 
part of the forests but for convenience we will denote the set of cycle elements by F° and also 
Fc° = {c) but c$Fc. 

The next theorem and corollary explain the subgroup structures present in the digraphs. 
First, it will be shown that the order of an element is constrained by its height in the forest 
structure. 

Theorem 21: Let a GFC and otdpc = d\t. Then ovd pa\khd if and only ifasF*, where x<h. 

Proof: (=>) Suppose ord a\khd. Then (ak )d = 1 (mod/?). Now, using Theorem 4, 
p 

v _ o r d ^ l = ordpl=ordp(afe f = 
g c d « ordpak ) 

Since gcd(rf, ovdpak ) = ordpak , ordpak divides d which divides t. From Theorem 15, ak must 
be a cycle element, and hence a GF*, where x<h. 

(<=) If a EFC
X and x<h, then ak is a cycle element of order d. Furthermore, 

ord a 
d = ord jaK = —^ ; 

p gcd(F,ordpa) 
hence, d • gcd(£x, ord^a) = ordpa, and thus ordpa\d-kx\d-kh. • 

From Theorem 21, it can be ascertained that various geometric subsets of the digraph form 
subgroups of Z*, as stated in the next corollary. 

Corollary 22: For all d dividing t and all h, U F* is a subgroup of Z* namely / / ^ , . 
0<x<ft 

ord c\d 

Proof: The union over all c such that ord^cl^ and over all x<h contains all a eZ* such 
that ord a\khd by Theorem 21. This is the subgroup Hkhd of Z* by Lemma 20. D 

Corollary 22 indicates that the union of cycle vertices with orders dividing a fixed d and 
vertices in their associated forest structures up to a fixed height form a subgroup of Z*. In par-
ticular, if d = 1, all the vertices in Fx up to any fixed level (along with 1) form a subgroup. On the 
other extreme, if d = t, all the vertices in all the components up to a fixed height form subgroups. 
Examining the digraph of G41 (Fig. 2), one finds the following subgroups: 

d = xh = 0: F? = {l} = Hl; 
d = 1, h = 1: i f u F / = {1,9,32,40} = H4; 
d = l,h = 2: F?vF?vF? = {1,3,9,14,27,32,38,40} = H16; 
d = 5,h = 0: F° = {1,10,16,18,37} = H5; 
rf = 5,/i = l: F°^Fl = {1,2,4,5,8,9,10,16,18,20,21,23,25,31,32,33,36,37,39,40} = H20; 
£/ = 5,/i = 2: F ° L J F 1 U F 2 = {1, . . . ,40}-Z4*1 = H8 0. 
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These algebraic properties imply that the highest level of the digraph, which will be referred 
to as the canopy, must contain at least half of the vertices. For example, in G^ (Fig. 2) the 
canopy is F2: 

Corollary 23: If 1% is the maximal height attained by the forest elements in Gk, then 
\F^\>{p-l)/2. 

Proof: 
(i) If h0 = Q, then all vertices are in cycles, so \F°\= p-1 >(p-1) /2. 

(u) If h0 > 1, then from Corollary 22, H^-i, = U Fn is a proper subgroup of Z*. The 

number of elements in H ^ i must be a proper divisor of \Z* |= p-1. Since the largest proper 
divisor of /? - 1 is (p -1) / 2, there are at least (p -1) / 2 vertices remaining in the canopy. • 

We also see a relationship between forest elements, cycle elements, and their products in the 
following corollary. 

Corollary 24: The product of a forest element and a cycle element is a forest element. 

Proof: The cycle elements of Gk form a closed multiplicative subgroup of Z*; hence, the 
product of a forest element and a cycle element must be a forest element. D 

5. OCCURRENCE OF LONG CYCLES 

Control over the lengths of cycles is highly desirable. This is essential for applications to 
pseudo-random number generation and data encryption. The first theorem below provides an 
upper bound for the cycle lengths appearing in Gk. Special cases where long cycles can be 
guaranteed are then considered. 
Theorem 25: Let p > 5 be prime. Then the length of the longest cycle in Gk

p is less than or equal 
to ( /? -3) /2 . 

Proof: Consider two cases depending on gcd(&, p-l). 
(i) Suppose gcd(&, p -1) & 1. By Lemma 12, Gk is not entirely cyclical and by Corollary 23 

it has a forest structure with at least (p-l)/2 vertices in the canopy. Therefore, there are at 
most (p -1) 12 vertices in cycles. Since p > 5, we know we are not interested in longest cycles of 
length 1, and since 1 is in a loop, it is not part of any longest cycle of interest; hence, the maximal 
length cannot exceed [(p -1) / 2] - 1 = (p - 3) / 2. 

(ii) Suppose gcd(&, p -1) = 1; thus, Gk consists entirely of cycles. From Theorem 19, the 
longest cycle length is associated with the elements of order t - p-l, which can be factored as 
2sr, where s > 1 and r is odd. 

(a) If T * 1, then the number of elements of order p -1 is </>(p -1) = <j>(2sr) = 2s~l<j>(j) < 
2s~l r = (p-l)/2. Now, since </>{p -1) is an integer, <f>(p -1) < (p - 3) / 2. Hence, even if all ele-
ments of order p-l were together in one cycle, the length could not exceed (p - 3) / 2. 

(b) If r - 1, then p - 2s +1 is a Fermat prime larger than 5, so s > 2. By Theorem 19, 
the length of the longest cycle is t(t) = l(2s) - ord2,£. However, Z*, does not have a primitive 
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root for s > 2 (Theorem 5). Thus, ord2,£ < (j){2s) = (p -1) / 2; hence, £(0 < (/? - 3) / 2 in this case 
as well. D 

While Theorem 25 gives an upper bound for the cycle lengths in Gk it does not specify 
whether this bound is ever attained. The next theorem shows that, for Sophie Germain primes, 
these maximal cycle lengths can be attained. 

Theorem 26: Let p = 2q + l, where q is an odd Sophie Germain prime. If A: is a primitive root 
mod q, then Gk

p contains a cycle of length (p - 3) / 2. 

Proof: Because gcd(&, q) = 1 and q\t, the elements with order q are in cycles of length 
ord^ = 0 - l = ( p - 3 ) / 2 . • 

Corollary 27: Let p = 2q + l, where q is an odd Sophie Germain prime. If k is an odd primitive 
root mod q, then Gk

p contains two cycles of length (p - 3) / 2. 

Proof: Since k is odd, f = 2q and the graph is entirely cyclical. The elements of order q are 
in a cycle of length ordqk = q-l = (p-3)/2. The elements of order t - 2q are, by Theorem 19, 
in the longest cycles of the digraphs. So the elements of order 2q are also in a cycle of length 
<>-3)/2. • 

For example, consider G%3 (Fig. 4); p = 23•= 2(11) +1, and 2 is a primitive root mod 11. As 
expected, G%3 contains one cycle of length 10. Corollary 27 is illustrated by G5

A1, where p - 47 = 
2(23) +1, 5 is a primitive root mod 23, and the digraph has two cycles of length 22. 

Given a prime of the form 2g + l, where k is a primitive root mod q, it is simple to iterate 
through a cycle of length (p - 3) / 2. Any residue between 2 and p - 2 is either in a long cycle or 
is one step away. Beginning with any such residue, we can iterate xk (mod p) to produce 
( p - 3 ) / 2 incongruent values. For example, consider the prime 9887 = 2(4943)+ 1, where 4943 
is also prime. Since 7 is a primitive root of 4943, iteration of x7 (mod 9887) beginning with any x 
from 2 to 9885 will yield 4942 incongruent values. 

JC2 mod 23 X 1 2 3 

Q 
T 

22 

17 10 15 

1 1 i 
1 3 — » 8 _ * 1 8 — » 2 4 — 5 

t 1 
11 — » 6 4 4—21 

T 1 
1 4 — H 2 4— 9 4—3 *— 16 

t T T 
20 7 19 

d 4 7 

2 — » 3 2 — • « 

t 
28 

t 
7 

1 

0 
1 » 3 7 — • 

Q 
16—»6 • 21—•36—M8 

I 
27 

1 
42 

1 
34«—17 4—9 «— 8 4 — 3 ^ — 1 4 4—124—25 4—24 

5 _ _ * 2 3 — # 2 2 — » 3 5 - * 3 3 - H > 44—»39—»38—^30 
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114—26 4—414—314—104—43 4—15 4—45 4—19 

FIGURE 4, The Digraphs G2
2
3 and G; ^47 
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6. CHARACTERIZING FORESTS 

Having completely characterized the cycles for the digraph generated by xk (mod/?), we turn 
our attention to characterizing the noncyclical elements of Gk. In each of our examples, we 
notice that the forests in any particular digraph are isomorphic. This turns out to be true in 
general, and will be proved by constructing a one-to-one correspondence between Fj and Fc. The 
next lemma gives the essence of how the correspondence will be constructed. 

Lemma 28: If a GF/7 and c is a cycle vertex, then ac GF'L. 

Proof: Using Corollary 24, it follows immediately that ac £F°. Furthermore, (acf = ck 

(mod/?) is a cycle element but (acf is a forest element, which implies that ac G F ^ . • 

Theorem 29: Let c be a cycle element, then Fx« Fc. 
Proof: 
(i) First, we show that there exists a one-to-one correspondence between the vertices of F/7 

and FJ7 for all heights h, and hence between Fx and Fc. Let h be fixed and let ch denote the unique 
cycle element such that cf = c (mod/?). Define fh : F/7 -> FJ7 by fh(a) = a-ch (mod/?). Next, we 
check that fh is one-to-one and onto. Let b GFJ7. Then (b-cff* = bk*\cf)~l = cc~x =1 GF2° 

and (b-c^)kh~l £F° because i**"1 £F° and c^ _ 1 GF°. It follows that 6-c^1 GF/7. Furthermore, 
fh(b'chl) = b'chl'ch=b (mod/?), so /^ is onto F* Suppose A(^ ) = A(a2) (mod/?) for 
al5a2 GF/7. Then ^ -c^ = a2 -ch implies ax = a2 (mod/?). Thus, fh is one-to-one. 

(ii) It remains to be shown that there exists a one-to-one correspondence between the edges 
of Fx and Fc. We want to define g: E(F1) -^ E(FC) by g(a, ak) = (fh(a), fh^{ak)), where h is the 
height of a in Fx. If (fh(a),fh_l(ak)) is in fact in E(FC), then # will inherit the one-to-one and 
onto properties from fh and/^.j. We have an edge (fh(a),fh-i(ak)) ^ anc* only if (fh(a)Y = 
fh-\(pk) (mod/?). Now //,(#) = a'ch (mod/?), where c£ = c and/A_j(a) = a-ch_x (mod/?), where 
ĉ _j = c (mod /?); thus, c\ = c => (c^)* = c (mod /?). By the uniqueness of ch, ch_x = c\ and 
fk-i(a) = <*'4 (mod/?). Now(/fc(fl))*E(a.cA)*Efl*.4E/w(fl*) (mod/?). Hence, (/A(a), 
fh-\(ak)) eE(Fc) and, by the argument above, the edges and vertices are in one-to-one corre-
spondence, so Fx « Fc. D 

There is another property of this mapping that can be addressed. Consider a eF2 and c GF°; 
the order of the element ac (mod/?) will be (ord/?a)(ord/7c). That is, the isomorphism "preserves" 
orders between Fx and Fc in that the orders of corresponding elements in ¥c are multiplied by the 
order of c. 

Theorem 30: If a GF2 and b GFC with ch the cycle element such that b = a-ch (mod /?), then 
ordp* = (ord/?a)(ord/7c). 

Proof: By Theorem 21, ordpa\kh and thus gcdfardyz, /) = 1. By Theorem 15, ordpc = 
ordpch \t, hence gcd(ordpa, ord^c) = 1, and applying Theorem 6 gives the desired result. D 
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Some examples of the isomorphism described in Theorem 29 and Theorem 30 can be seen in 
Table 2. 

TABLE 2, Some Orders and Products in Gt 

a 

1 

9 

1 3 

c 

10 

37 

10 

ac 

10 

5 

30 

oidpa 

1 

4 

8 

ordpC 

5 

5 

5 

ordp ac 

5 

20 1 

40 1 

Finally, we prove a result that determines the height of the forests. 

Theorem. 31: If h0 is the minimal h such that p-l\kht, then hQ is the height of the forests in Gp. 

Proof: 
(i) If gcd(&, p -1) = 1, then h0 = 0 and all the vertices are in cycles. 

(ii) If gcd(£, p -1) * 1, then h0>l. Let a be a vertex of order p-l. From Theorem 21, a 
must be at height h0 because ordpa |^rbut ovdpaj[kho~lt. There are no vertices at a greater 
height since, for any vertex h in Gk

p, ordpb \p -11k*01; thus, ft is at level h0 or lower in Gk
p. D 

For example, in G^ we see that t = 5 and 41-1 = 40|425, which implies that the height of the 
forest is 2. This value is apparent in Figure 2. 

7, PRIME POWERS 
In the special case where the powers are prime, many of our results simplify. In particular, 

while we were able to prove that the forest structures were isomorphic with a general exponent &, 
we can completely characterize that structure if the exponent is prime. We will consider the 
digraph associated with a prime exponent q, letting p-l = qst, where t is relatively prime to q. 

[0 or q \ip = 1 (mod q\ 
Corollary 32: The indegree of a vertex in Gl is i 

J p [l otherwise. 
Proof: This follows from Lemma 11 and Lemma 12 with k = q. D 
This result implies that all the digraph components are cyclical if and only if p # 1 (mod q). 

Corollary 33: If p = 1 (mod q\ then any cycle vertex has q -1 noncycle children. 

Proof: This follows from Lemma 13. D 

Theorem 34: If p = 1 (mod q), the q-\ noncycle children of each cycle element are roots of 
complete g-nary trees. 

Proof: Since the t forests in Gq
p are isomorphic and there are qst elements in the digraph, 

jFt\=q*-l. Furthermore, Theorem 31 implies that the height of Fx is s. If ¥x is not composed of 
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q-\ complete q-naxy trees, there exists a vertex that has indegree 0 but is not at height s. This 
would imply that \$i\<qs-1, a contradiction. Since all the forests are isomorphic to F1? and F2 
consists of complete #-nary trees, all the forests in Gq

p are complete #-nary trees as well. • 

As an example, consider Fj in the digraph GlQ9, as shown in Figure 5. Since 109-1 = 33(4) 
and 453 = 633 = 1 (mod 109), 45 and 63 are roots of complete ternary trees with height 3 -1 = 2. 

When the power is prime, we can say more about the orders of elements in the digraph Gq 

Theorem 35: A vertex a e F/* if and only if ordpa = qh. 

Proof: Consider Theorem 21 with k = q and c = 1, and hence d=l. Then ord a\qh if and 
only if a eF* for x < h. Having elements of order qh in a level x less than h would imply that 
qh \qx, where x < h, a contradiction. D 

Returning to G^09 (Fig. 5), one can check that the orders of 3, 9, and 27 correspond to F/, 
F*, andF3. 

35 7 

i 1 
25 - + 38 •— 49 5 — H 6 «—97 

9 I I 48 

1 I I i 
78—*-75 ^45 •(,)« 63 < 66<«—81 

r ! I r 
22 89 

15—»>105^—73 3—»27<— 80 

r T 
21 26 

FIGURE 5. The Forest Fl in Gj^ 

Corollary 36: If a e F<? then ord^a = qhordpc. 

Proof: Theorem 35 and the multiplying principle of Theorem 30 give the desired result. D 

CONCLUSIONS 

We have seen that many of the features of the digraph Gk
p can be determined in terms of 

properties of/? and k. In particular, we have seen that the digraphs consist of components with 
exactly one cycle per component and that the forest structures associated with each cycle vertex 
throughout the digraph are isomorphic. The cycle lengths depend on the orders of the elements. 
We can also determine the height of the forests. In special cases, long cycles can be found and 
complete #-nary trees can be guaranteed. 

While we have found a very rich structure for the digraphs associated with xk mod p, it is 
natural to ask what other digraphs arising from functions such as these have a rich structure. The 
function xk mod m, where rn is not prime, will have a much different digraph since 0 will not 
necessarily be in a trivial cycle and primitive roots may not exist. In [2], the authors start to 
investigate this problem. On the other hand, looking at xk in a finite field where 0 must be trivial 
and primitive roots always exist ought to lead to a theory like that seen in this paper. Digraphs 
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from functions such as xk +1 (mod p) will be difficult to handle because we cannot lean on the 
theory of orders of elements as in this paper. It would be interesting to know what kind of 
control on the digraphs can be obtained In such cases. 
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