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PROBLEMS PROPOSED IN THIS ISSUE 

H-513 Proposed by Paul S. Bruckman? Salntiya, Kuwait 

Define the following quantities: 
(2w + 2)! ^ = Y_L_ B = y l

 c,y(Ml D = y < 
i + l)\f(n + 2)\ 

Prove that A2D = B2C. 

H-514 Proposed by Juan Pla9 Paris? France 

1. Let (Ln) be the generalized Lucas sequence of the recursion Un+2-2aUr}+l-\-Un = 0 with 
a real such that a > 1. Prove that 

lim W y - " i * = l l _ 
N-»+*O L r + l 4 a<4a2 _ i 

2. Show that the above expression has a limit when (Ln) is the classical Lucas sequence. 

H-515 Proposed by Paul S. Bruckman9 Salntiya, Kuwait 
For all. primes p * 2,5, let Z(p) denote the entry-point ofp in the Fibonacci sequence. It is 

known that Z(p)\{p -(£)) . Let a(p) = (p-(jr))/Z(p)9 ? = £(/>-(£))• Prove that if p = 1 or 9 
(mod 20) then 

Fq+l^(-lfq+a{p))(modp). (•) 

H-516 Proposed by Paul S* Bruckman, Edmonds, WA 
Givenp an odd prime, let k(p) denote the Lucas period (mod/?), that is, k(p) is the small-

est positive integer m - m(p) such that Lm+n = Ln (modp) for all integers n. 
Prove the following: 
(a) Let u = u(p) denote the smallest positive integer such that au = /?" = 1 (mod p). Then 

u = m = k{p). 
(b) k(p) is even for all (odd) p. 
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(c) p = l (modk(p)) iff/? = 5 orp s ±1 (mod 10). 
(d) p = -l + \k(p) (modk(p)) iffp = 5orp^±3 (mod 10). 

H-508 Proposed by H.-J. Seiffert, Berlin, Germany (Corrected) 

Define the Fibonacci polynomials by F0(x) = 0, Fl(x) = l, Fn(x) = xi^7_1(x) + i^_2(x), for 
n > 2. Show that, for all complex numbers x and y and all positive integers n, 

FMFM = n±^(^{x+yfFM\ xy-4 

As special cases of (1), obtain the following identities: 

Fn(x)F„(x + l) = nZ k + \ i=0 

\2k 

n-\ /i\n-Je+l 

x * 0 : 

2/fc + l 
„2fc+2 n + k\x*™-(-4) 

x2+4 

F^ix) = ( 2 » - l ) 2 g 2 ^ f 2 " 2 ^ J- l)xkFk+l{4lx). 
k=0 k + lV 2A + ] 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

SOLUTIONS 
Recurring Theme 

H-497 Proposed by Mohammad K. Azarian, University of Evansville, Evansville, IN 
(Vol 33, no. 2, May 1995) 

Solve the recurrence relation 

-*- C-*-x, ^ 
I lUf1 MIK-, = 0, 

where r is any nonzero real number, n > k > 1, and xm ^ 0 for all #2. 

Solution by the proposer 
First, we note that 

k ( k x ^ f k Y f * f 1 "V 
/=0 \j=0 xn-i J \t=0 J i/=0 \xn-i J 

r(*+l) ^ 
+ 1 
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Now, using the fact that (x„xw_1 • • • xn_k)r * 0 and making the substitution 

7 = 0,1,2, . . . ,*, 
f i Y(*+i) 

^ , J L , * - , . 

we obtain the following nonhomogeneous recurrence relation of order k: 

un + un_1 + un_2 + -+un_k = -l. (!) 

Next, the general solution to (1) has the form un = w^ + w^\ where u^ is a particular solution to 
(1) and u^ is the general solution to the homogeneous recurrence relation 

H„ + V I + V 2 + - + I W = 0- (2) 
We know that u^n

p) must be a constant .4. Thus, substituting A in (1), we obtain M ^ = -—j-. To 
find u^\ we note that the characteristic equation associated with (2) is 

^+A*-1 + ̂ " 2 + - + A + l = 0. (3) 

Hence, using the fact that lk+l-l = (A-l)(Xk +Xk'l + Xk'2 + ---+/1 + 1), the roots of (3) are k 
distinct complex roots of unity: 

^ = C 0 S X7i + l s m ^7Y ? 7W = !'2'•••'*• 
But, since Xm is the complex conjugate of Ak+l_m when A: is odd, Xk±\ = - 1 . Thus, if £ is odd and 

Jfc > 3 [if ifc = 1, then t$> = C(-l)w], then 

2 

MW = C ( - l )" + X ( 4 , cos(/i^) + 5m sin(«0J), 

where C, 4w, a n^ ^w a r e constants and 0m = tan_1(tan^f-). If £ is even, then 
i 

«f = I (4- cos(«0J + 5m sin(/i0J), 
/ W = l 

where Am, Bm, and $m are as above. Therefore, the general solution to the given recurrence rela-
tion is 

xn = (unyxfcv = {u^ + u{
n

p) Y7^. 

Also solved by A. Dujella and P. Bruckman. 

Pseudo Primes 

H-498 Proposed by Paul S. Bruckman^ Edmonds^ WA 
(Vol 33, no. 2, May 1995) 

Let u = ue = L e, e = 2,3,.... Show that if u is composite it is both a Fibonacci pseudoprime 
(FPP) and a Lucas pseudoprime (LPP). Specifically, show that u = 7 (mod 10), Fu+l = 0 (mod u\ 
and Lu = 1 (mod u). 
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Solution by L. A. G. Dresel, Reading, England 

For convenience of writing subscripts, let E = 2e so that ue = LE and 

ue+l = L2E = (LE)2-2 = (uef-2. (1) 

Now make the inductive hypothesis that, for some e > 2, 
*/e = 7 (mod 10). (2) 

Then (1) gives ue+l = (ue)2 - 2 = 49 -2 = 7 (mod 10) and, since ^ = Z4 = 7, the congruence (2) is 
proved for all e > 2. 

Next, make the inductive hypothesis that, for some e > 2, 
ue - h2e+l -1, where h is an odd integer. (3) 

Then 
ue+l = (ue)2-2 = (hT+l-l)2-2 

= (h22e-h)2e+2~l, 

where (h22e -h) is again an odd integer, since h is odd. But u^ = 2 3 - l , and therefore (3) is 
proved for all e > 2. It follows that ue is always odd. 

Now, since u-ue- LE, we have LE=0 (mod u) and, similarly, F2E - FELE = 0 (mod u). 
Furthermore, (3) shows that u +1 = 2hE is a multiple of 2E, and it follows that Fu+l = 0 (mod u). 

Next, ^(zz + ̂ ^AE" is an odd multiple of E, so that Lm is divisible by LE and LhE = 0 
(mod w). Thus, ZM+1 = Z ^ = (Z^-)2 - 2 = -2 (mod w). From the identities ZM+2 + Lu = 5i^+1 and 
ZM+2 ~LU- ZM+1, we have 2iM = 5i^+1 - ZM+1 = 2 (mod w), giving Lu = 1 (mod w), since z/ is odd. 

Remark: Another proof of Lu = 1 (mod z/), also based on formula (3) above, was given by A. Di 
Porto and P. Filipponi in their article "A Probabilistic Primality Test Based on the Properties of 
Certain Generalized Lucas Numbers" in Lecture Notes in Computer Science 330 (1988):211-223. 

Also solved by A. Dujella, H.-J. Seiffert, and the proposer. 

FPPs and LPFs 

H-499 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol 33, no. 3, August 1995) 

Given n a natural number, n is a Lucas pseudoprime (LPP) if it is composite and satisfies the 
following congruence: 

Ln = 1 (mod n). (1) 

If gcd(w, 10) = 1, the Jacobi symbol (5/ri) = sn is given by the following: 

fl if w s ±1 (mod 10), 
e"~\-l if u s ±3 (mod 10). 

Given gcd(??, 10) = 1, n is a Fibonacci pseudoprime (FPP) if it is composite and satisfies the 
following congruence: 
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Fn_s^0(modn). (2) 

Define the following sequences for e = 1,2,...: 

u = ue = F3§+l/Fr; (3) 

v = ve = L3e+l/L3e; (4) 

w = we = F23e+l IF23e = uv. (5) 

Prove the following for all e > 1: (i) u is a FPP and a LPP, provided it is composite; (ii) same 
statement for v; (iii) w is a FPP but not a LPP. 
Solution byH.-J. Seijfert, Berlin, Germany 

We need the additional easily verifiable equations: 

F3k=5Fk
3 + 3(-l)kFk, (6) 

Z3t = 4 - 3 ( - l ) % , (7) 
Llk = L\-2{-\f = SFk

2
+2{-\f, (8) 

where k is any integer, and the following propositions. 

Proposition 1: If n is a composite positive integer such that gcd(w, 10) = 1, then n is a FPP and a 
LPP if and only if Fyi(/1_£n) = 0 (mod n) if n = 1 (mod 4), and Lyi{jl_£n) = 0 (mod ri) if n = 3 (mod 
4). 

Proof: This is just the result of H-496. 

Proposition 2: If e is a positive integer, then X4 3 « is an odd positive integer divisible by 3e+l. 

Proof: This is true for ,e = 1, since ^ 4 = 9. Suppose that the statement holds for e, e GN . 
Then we have Yi\^ - 3e+lm, where m is an odd positive integer. Equation (7) with k = 2-3e 

gives 
% . 3 " ' = K(4-3- -3i2-3«) = 3e+^(4-32e+1m2 - 1), 

showing that the statement holds for e +1. This completes the induction proof. Q.E.D. 

Proposition 3: If k and n are nonnegative integers, then we have gcd(4, 4AT«) e {1,2}. 

/ *w/ - From 4 ^ = 44( 2«-i) ~ H ^ ^ - i ) ' k follows t h a t 

g c d ( 4 , 4 ^ ) e{gcd(4,4^), gcd (4 ,4 )} . 

Since 4 ^ = l£ -2(- l )* and 4 = 2, the desired result follows. Q.E.D. 
Now we are able to prove the statements of the present proposal. From (6)-(8), we obtain 

i#e + l = 5 / ^ - 2 = ^ 3 . = 4 + 2 = vtf-l, etN. (9) 

Since F^, e GN, is even, it follows that u-ue = -3 (mod 10), w = 1 (mod 4), v = ve = -1 
(mod 10), and v = 3 (mod 4), so that eu = -l and ev = 1. Using Proposition 2, equations (9), and 

1996] 383 



ADVANCED PROBLEMS AND SOLUTIONS 

the well-known divisibility properties of the Fibonacci and Lucas numbers, we conclude that 
F

3^ I Fy2(U+i) a n d V 1 1 Ly2(v-iy w h i c h "My Fy2(u+i) = ° ( m o d u) a n d Ly2(v-i) = ° ( m o d v) • A P P ^ 
ing Proposition 1, we see that u is a FPP and a LPP If it Is composite, and that v Is a FPP and a 
LPP if it is composite. This solves (I) and (II). 

From what has been proved above, we have w = uv = 3 (mod 4), w = 3 (mod 10), ew = -\, 
w + l = u(u + 2) + l = (u + lf, and 

Fw+1 = 0 (modi/) and Fu+l = Fv_x = 0 (modv). (10) 

We note that (10) remains valid If u or v is a prime. Since gcd(w, v) = gcd(w, u + 2) = gcd(u7 2) = 1 
and since Fu+l \ F^u+l)i = Fw+1, from (10) we obtain Fw+l = 0 (mod w). Thus, w is a FPP, since it is 
composite. However, w Is not a LPP. This can be seen as follows. Assume, by way of contradic-
tion, that w is a LPP. Then, since w is a FPP as shown above, we would have Ly^w+V) = 0 (mod 
w), by Proposition 1. It then would follows that 

v|gcd(%v_1)? Ly2(w+l)) = gcd(%w+1), Ll/i{u+lf). 

However, J (̂w + 1)2 is an even multiple of %(u + T); thus, by Proposition 3, we have v e{l, 2}. 
Clearly, this is a contradiction, since v Is obviously greater than 2. Hence, w cannot be a LPP. 
This solves (Hi). 

Also solved by L. A. G. Dresel and the proposer. 

Belated Acknowledgment: C. Georghiou solved H-486. 
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