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1. INTRODUCTION 

Let {i/. | J G N } be the two-term recurrence sequence defined by u0 = 0, ux-\, and 
ut = aut_x +hui_2 for all / > 2, where a and b are fixed integers. Let m be an integer and consider 
the corresponding sequence { .̂}, where u. GZ/mZ is obtained via the natural projection 
Z->Z//wZ. 

It is well known that {ut} is eventually periodic and, if b is relatively prime to m, such a 
sequence is purely periodic (see, e.g., [3] or [10]). We will designate by X{m)-Xah(m) the 
length of the (shortest) period of { .̂}, and for each r e Z , we define v(m, r) = va b(m, r) to be the 
number of occurrences of the residue r (mod m) in one such period. We also define £l(m) = 
nawb(m)={va9b(m,r)\reZ}. 

The sequence {#.} is said to be uniformly distributed modulo m if each residue modulo m 
appears an equal number of times in each period, that is, if |Q(/w)| = 1. The sequence {ut} is said 
to be stable modulo the prime/? if there is a positive integer N such that Q(pk) = £l(pN) for all 
k>N. If N\s the least such integer, we say that stability begins at N. 

Interest in the stability of two-term recurrence sequences developed from the investigation of 
the uniform distribution of the Fibonacci sequence. A flurry of papers in the early 1970s culmi-
nated in the complete characterization of those integers modulo which a two-term recurrence 
sequence is uniformly distributed. A thorough exposition can be found in [5]. 

The subject lay dormant until the ground-breaking work of Schinzel [7], who classified the 
sets Qa l(p) for odd primes/?. Pihko extended Schinzel's work to cover some additional two-
term recurrence sequences in [6], and Somer explored and extended Schinzel's work in [8] and 
[9]. In 1992, Jacobson [4] investigated the distribution of the Fibonacci sequence modulo powers 
of 2 and discovered that the Fibonacci sequence is stable modulo 2. He used this stability to com-
pute vu(2*, r), for all k G N and r eZ . 

In the present work we explicitly compute vab(2k,r) for all k > 5 and all integers r, when-
ever a is odd and b = l (mod 16). We will show that {uf} is stable in this case, and that 
Jacobson's result for the Fibonacci sequence is archetypal for this situation. 

Theorem 1.1: Assume that a is odd and b = 1 (mod 16). Then, for all k > 5, 

1 ifr = 3(mod4), 
2 ifr = 0(mod8), 

v{2k,r) = \3 ifr = l(mod4), 
8 if r = a2 + b (mod 32), and 
0 otherwise. 
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Corollary 1.2: Assume that a is odd and b = l (mod 16). Then {w.} is stable modulo 2, with sta-
bility beginning at N = 5, and Ofl>&(2*) = {0,1,2,3,8} for all k > 5. 

The reader may wonder if stability also occurs for other choices of the parameters a and b. 
In fact it does, though the proofs are considerably more delicate. Table 1 gives the value of N at 
which stability begins for a given pair (a,b). In [2] we proved that {ut} is stable when b = 5 
(mod 8), and in [1] we dealt with the case b = 3 (mod 4), in which stability apparently occurs less 
frequently. 

TABLE 1. Smallest * for which Qa,*(2*) = Q^(2*+') for all t > 0 
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A missing entry in Table 1 corresponds to a case that we have not yet resolved (but conjec-
ture to be unstable). In particular, as of this writing, the stability of {14} when b = 9 (mod 16) is 
undetermined. 

2. PRELIMINARY LEMMAS 

In this section we present a few lemmas required for the proof of Theorem 1.1. Throughout 
this section, assume that a is odd and that b = l (mod 16). As usual, {ut} will denote a two-term 
recurrence sequence defined by uQ = 0, ux - 1, and u. = aut_x +bui_2 for all i > 2. 

The following lemma summarizes some well-known facts about two-term recurrences. The 
routine induction proofs of each part are left to the reader. 

Lemma 2.1: For all m > 1 and n > 0, 

(a) ^n = btW-iun+unMn+i, 

(c) u2n = 2unun+l-a(unf,md 
(d) un divides unm. 
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Although the next lemma is stated only for b = 1 (mod 16), analogs exist for all odd b. The 
interested reader is invited to discover these congruences. 

Lemma 2.2: For all k > 5, 

_ J2k~l (mod 2k+1) if a = 1 (mod 8) or a s= 3 (mod 8), 
Si*-* -13 B 2k-i ^mod 2*+1 ̂  if a s 5 ̂ mod 8) or a s 7 (mod 8^ 

and 
_ J l + 2*-2(mod2*) i f as l (mod8)ora = 7(mod.8X 

^3'2*~3+1" [i + 3. 2*"2 (mod 2*) if a s 3 (mod 8) or a = 5 (mod 8). 

Proof: We will prove the results for a = 1 (mod 8) and leave the analogous proofs when 
a = 3,5, or 7 (mod 8) to the reader. To this end, assume that a = 1 (mod 8). We prove (a) and 
(b) simultaneously by induction on k. The base step, when k = 5, can be checked by explicit com-
putation. Since there are only a finite number of two-term recurrence sequences modulo 25 and 
26, this computation is finite, and we leave it to the reader to verify the result. 

Now assume that (a) and (b) are true for some k > 5. Since k > 5, it follows that Ik - 4 > 
k + l and 2k - 2 > k +1. Therefore, by Lemma 2.1 and the induction hypothesis, 

S2*-2+l=\3.2^3Hl=*(W3.2*-3) +(W3.2*-3+l) 

s b{2k~lf + (1 + 2k~2)2 (mod 2k+l) 
EE b • 22k~2 +1 + 2k~l + 22k~4 (mod 2k+1) 
s l + 2*"1 (mod2*+1), 

as desired 
Now 

A: + 2 and, therefore, by Lemma 2.1 and the induction hypothesis, 
Now write ^3.2*-3+1 = 1 + 2 + 2 v for some integer v. Since £ >4, it follows that 2k-2 > 

Lemma 2.1 and the induction hypothesis, 
\2 

W3.2*-2 = ^2(3-2*-3) = 2(W3:2^3^2*-3
+l)"a^3-2i-3) 

s (2 • 2k~l) • (1 + 2k~2 +2kv)- a{2k~lf (mod 2*+2) 
E 2 * ( 1 + 2*"2) (mo'd2*+2) 
^2* (mod2*+2), 

as desired. This completes the induction and, hence, the proof of the lemma for a = 1 (mod 8). D 

Clearly the residue classes of un modulo 2, 4, and 8 depend only upon the residue classes of a 
and b. These classes will be required below. They may be computed directly, and we list them 
here for convenience. 

Reduction of {ut} modulo 2 yields 
0,1,1, 0,1,... for all odd a and b. (2.1) 

Since b = \ (mod 4), reduction of {wj modulo 4 yields 
0,1,1,2,3,1,0,1,... if a s i (mod 4), 

(2.2) 
0,1,3,2,1,1, 0,1,... if a = 3 (mod 4). v J 
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Finally, since b = l (mod 8), reduction of {«;.} modulo 8 yields 

0,1,1,2,3,5,0,5,5,2,7,1,0,1,... 
0313332313530353732353130313... 
03135323735?0353132333130313... 
0,1,7,2,5,5,0,5,3,2,1,1,0,1,... 

fa = l (mod 8), 
fa = 3 (mod8)3 (2 3) 
fa^5 (mod8), v ' ; 

f a s 7 (mod 8). 

In the next lemma we examine the periods of two-term recurrence sequences defined by our 
parameters a and b. 

Lemma 23: If b = 1 (mod 16) and a is odd, then X(2k) = 3 • 2k~l for all k > 5. 

Proof: Fix an integer k such that k>5. By Lemma 2.2, u k_x = 0 (mod2fc) and w_ ^ = 1 
(mod 2*). Hence, A(2*) divides 3-2*"1. But, by Lemma 2.2, u32^2+l^l + 2k~l (mod2k) (in all 
cases) so that X(2k) does not divide 3-2^~2. Since, by (2.2), u k^ #0(mod4), it follows that 
uk.x 4 0 (mod 2*) and, hence, X(2k) does not divide 2k~l. It now follows that X{2k) = 3-2*"1. D 

We now derive four lemmas that are key to the proof of Theorem 1.1. 

Lemma 2.4: Assume that k > 5. If n > 0 and n £ 0 (mod 3), then u 2k-i = ww +2^_1 (mod2k). 

Proof: Note that by (2.1) un is even if and only if 3|«; hence, the hypothesis that n ̂  0 (mod 
3) implies that un is odd. Therefore, -by Lemmas 2.1 and 2.2, 

U ^nk-2 ~bU„ tW„ „t_2 + UJi^ nk-2 , 
«+3-2* z n~l 3-2* z w 3-2* z + l 

= 6ww_2 • 0 + unuy2k-i+l (mod 2fc) 

snw(l + 2A:-1) (mod2k) 
^u„+2k~l (mod 2*), 

as desired. D 

Lemma 2.5: Assume that k > 5. If n > 0 and n = 0 (mod 6), then w^^-s = w„ +2^ * (mod 2 ). 

Proof: By Lemma 2.2 we can write u k-3 =l + £-2k~2 (mod 2k) for some odd integer I. 
Then 

s *!/„_!• 2*-1+i/„(l + ̂ -2*"2) (mod 2*). 

Since both 6 and w^ are odd, bun_l-2k~l = 2k~l (mod2fc). Moreover, by (2.2), u6 = 0 (mod 
4) and, by Lemma 2.2, u6 divides un, so un = 0 (mod 4). Consequently, un(l + £-2k~2) = un 

(mod 2/c). Thus, ^+3^_3 = u„ + 2k~l (mod 2*), as desired. D 

We also need a lemma similar to Lemmas 2.4 and 2.5 to cover the case in which n = 3 (mod 
6). This will require a little more work. 

Lemma 2.6: Assume that k > 6. If n > 0 and « = 3 (mod 6), then u k.A =un+ 2k~l (mod 2fe). 
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Proof: Note that, by (2.3), un = 2 (mod 8) whenever n = 3 (mod 6). By Lemma 2.2 and the 
hypothesis that k > 6, we can find integers £ and m such that 

a =l + e.2k-3+m-2k-\ 
3-2* 4 + l ' 

where £ is determined by the class of a modulo 8. Also, by Lemma 2.2, there is an odd integer v 
such that 

^ - 4 - v . 2 ^ 2 ( m o d 2 ^ ) , 

where v is also determined by the class of a modulo 8. Moreover, note that (2.2) implies that 
un_x = a (mod 4) and recall that b = 1 (mod 16). Combining these congruences, we obtain 

W»+3-2*-4 = Ul-2k-A+lU" +b%2kAU»-l 

^(l + £-2k-3+m'2k-l)un+b-v-2k-2un_l(mod2k) 

= u„+£-2k~2 + av2k'2 (mod2k) 
^un+(£+av)2k~2 (mod2k). 

We now compute: 

J a (mod 8) 
1 
3 
5 

|| 7 

£ 
1 
3 
3 
1 

V 

1 
1 
3 
3 

1 + av (mod 4) | 
2 = 2 (mod 4) 
6 = 2 (mod 4) 
18 = 2 (mod 4) 
22 = 2 (mod 4) | 

In each case £ + av = 2 (mod 4); therefore, ŵ+3.2*-4 =un+2k l (mod 2^), as desired. • 

Finally, we require an easy generalization of Lemma 2.6. 

Lemma 2.7: Assume that n > 0 and s > 0. If n = 3 (mod 6) and k > 6, then z/ *_4 = un +s-2k~l 

(mod 2 ). 

Proof: Proceed by induction on s. If s = 0, the result is trivial. Fix s > 0 and assume the 
lemma is true for this value of s. Then 

Un+3-2k-4(s+l) " W«+3-2*-4+3^2*-4 ' 

Observe that n + 3 • 2/r~4 = « == 3 (mod 6), so by Lemma 2.6 and the induction hypothesis, 

M„+3.2-(J+l) S *W"< + ^ 2 * _ 1 ( m 0 d 2 " ) 
= M„+2*-1 + 5-2t-1 (mod 2*) 
^ M „+2 M (^ + l)(mod2/:), 

as desired. D 
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3, PROOF OF THE MAIN THEOREM 

In this section we prove Theorem 1.1. 

Proof of Theorem 1.1 

First, note that, by Lemma 2.3, X{2k) = 3 • 2k~l. In particular, X(2k+l) = 2 • X(2k). 
Now, proceed by induction on k. For k = 5 mdk = 6, there are only a finite number of 

sequences to examine (corresponding to b e{1,17,33,49} and a e {1,3,5,7,..., 61,63}). Direct 
computation (perhaps with the assistance of a computer) establishes the theorem in these cases. 

Assume that k > 6 and that Theorem 1.1 is true for this k. 

Step 1. If r s 3 (mod 4), then v(2^+1, r) > 1. 

Proof: By the induction hypothesis, v(2k+l,r) = 1, so there exists an integer w with un=r 
(mod 2*). Since r is odd, (2.1) implies that w# 0 (mod 3). Now, either un =r (mod2*+1) or 

ŵ = r + 2k (mod 2A:+1). In the latter case, Lemma 2.4 implies that ^w+32*-i =un+2h =r (mod 
2k+l). Thus, v(2*+1, r) > 1, as desired. D 

Step 2. If r = 1 (mod 4), then v(2*+1, r) > 3. 

Proof: By the induction hypothesis, v(2k, r) = 3. Pick indices 0 < # 1 < « 2 < ^ < 3 - 2k~l such 
that ^ = uni =u^=r (mod 2*). 

By Lemma 2.4, u y2k-\ = \ + 2* (mod2*+1). Also, for each i, either u^ = r (mod2*+1) or 

un_ =r + 2k (mod 2k+1). Hence, for each i, 

un^r (mod2k+l) or i / ^ ^ . , = r (mod2*+1). 

For each /, let mi e {nf, /?,. + 3 • 2^-1} be the index that satisfies um = r (mod 2^+1). Then the indices 
m^m^, and î 3 are congruent modulo 3-2*"1 to % ^ , and Wj, respectively. Furthermore, by Lem-
ma 2.3, 2(2*+1) = 3• 2*. Thus, the indices mujty, and m^ are distinct and satisfy 0<mt<X(2k+l). 
It follows that v(2k+\ r) > 3, as desired. D 

Step 3„ If r s 0 (mod 8), then v(2k+\r)>2. 

Proof: By the induction hypothesis v(2k,r) = 2. Hence, we can find integers nx and n^ such 
that 0<w1 <?22 <3-2*-1 and u =uni = r (mod2^). Now i^ =0 (mod 4), so (2.2) implies that 
^ = T^ = 0 (mod 6). By Lemma 2.5, M +3.2*-2 = ŵ  (mod 2*). It follows that n2=nl-h3- 2k~2. 

Now, either i^ = r (mod2*+1) or i^ = r + 2* (mod2*+1). If i^ = r (mod 2k+l), then, by 
Lemma 2.5, uni = ̂ +3.2*-i =̂ * (mod 2k+l) and, hence, v(2*+1,r)>2. On the other hand, if 
uni =r + 2k (mod2*+1), then, by Lemma 2.5, uni = un +3>2*_2 = u^ +2k = r (mod 2k+l). Therefore, 
uni = un +3>2A_, = r (mod 2*+1). Thus, v(2k+\ r) > 2 in this case as well. D 

Step 4. If r = a2 + 6 (mod 32), then v(2*+1, r) > 8. 
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Proof: By the induction hypothesis, v(2k, r) = 8. Choose n such that un = r (mod 2 ). By 
hypothesis, h = 1 (mod 16), and a is odd. Therefore, a2 = 1 (mod 8) and r = a2 +5 = 2 (mod 8). 
It follows from (2.3) that « = 3 (mod 6). Hence, Lemma 2.7 yields 

{ un (mod 2*) if 5 is even, 

un + 2k (mod 2*) ifsisodd. 
By Lemma 2.3, A(2*) = 3 • 2k~l. It follows that 

_Jr(mod2*) if s e {0,2,4, 6}, 
W"+3"2""4 ~ [r + 2k~l (mod 2k) if s e {1, 3,5, 7}, 

with all indices ^ + 3s • 2k~4 occurring within one period. 
Since, by the induction hypothesis, v(2k,r) = 8, we can now conclude that there are indices 

nx and r^ such that 0<nx <n2 <3-2k~l with n2-n1<3-2^"4 and un =un =r (mod 2k). As 
usual, for i = {1,2}, either un =r (mod 2k+l) or ww =r + 2k (mod 2^+1), and in the second case, 
Lemma 2.6 implies that u +3>2*-3 = r (mod 2^+1). Hence, there are subscripts m1 and /^ such that 
umx = u^ = r (mod 2^+1) and mi = «,- (mod 3-2*~3). 

Consider the set T = {mr + 3s- 2k~2|0< s < 3 and 1 < / < 2}. By Lemma 2.7, um = r (mod 2k+l) 
for m GT. Since X(2k+l) = 3-2*, it suffices to show that the elements of T are incongruent mod-
ulo 3-2*. 

If w/+3s-2^"2 =w;. H-3 -̂2^"2 (mod 3-2*) (for some s and t such that 0<s, t<3), then 
3(5 - 0 • 2*~2 = 0 (mod 3 • 2k) and, therefore, s = r(mod 4). Thus s = t. 

Moreover, if mx + 3s-2k~2 =17^+31-2k~2 (mod 3-2*), then mi =7^ (mod 3-2^~2)and, hence, 
n1 = ml = ^ = ^ 2 (mod 3-2^~3), which contradicts the choice of/%and/22 to satisfy r^-^K 
3-2*"4 mdn^r^. 

It follows that the eight elements of T are distinct modulo X(2k+l) and, consequently, 
v(2*+1,r)>8. D 

Step 5* Conclusion 

Proof: We have established that v(2^+1, r) > v(2k,r) in each case of Lemma 1.1 for which 
v(2^,r)>0. Now observe: 

2(2*+1) = 3-2* 
2j t + 1 - l 

= E^+V) 
r=Q 

> £ v ( 2 * V ) + £v(2*+1,/-) + ^v(2k+\r)+ 5>(2*+1,r) 
r=3(mod4) r=l(mod4) r=0(mod8) r=a2+b (mod 32) 

> I.2*+1.l+I.2*+1.3+-.2*+1-2 + —-2fc+1-8 
4 4 8 32 

= 2*"1 + 3 • 2k~l + 2*"1 + 2*"1 = 3•2* = A(2*+1). 
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It follows that all of the inequalities obtained in Steps 1-4 above are equalities. This shows that 
v(2k+l, r) = v(2*, r) for all r e Z, and completes the induction and the proof of Theorem 1.1. • 

Remark 3.1: As mentioned above, the techniques described in this paper may be extended to 
show stability of two-term recurrence sequences determined by other values of the parameters a 
and h. Originally, this work contained delicate arguments to handle a number of other such cases. 
Because subsequently developed methods have shown that only the case that 5 = 1 (mod 16) 
needs to be singled out in this way, we leave the extension of this "direct approach" to the reader. 
We would like to thank the referee for suggesting this lighter approach to the presentation. 
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