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1. PROLOGUE

André-Jeannin [1] recently defined a polynomial sequence {P"(x)}, where 7 is a real num-
ber, by the recurrence

BD@) = (x+2)BA(x) - B (x) (n22) (1.1)
with '
POy =1 POx)=x+r+1 1.2)

Furthermore [1], a sequence of integers {a,‘,’}c} exists for which

PO(x) =) alkxb, (1.3)
k=0
where
al =1 (n=0). (1.9

He also proved [1] the crucial formula (» > 0, £ >'0)

" _[n+ k n+k
an,k—( 2k )+r(2k+1) (1.5)
and the recurrence
ar(t,rl)c = Zaﬁ?l,k “ar(,r—)z,k +ar(,r—)1, 1 (M22,k=1). (1.6)

Simple instances of P"(x) are [1], with slightly varied notation,

BQ®) =b,(x) (n=1) (1.7)
and
PO)=B,(x) (n=1), (1.8)

where b,(x) and B,(x) are the well-known Morgan-Voyce polynomials [4]. (Please see [1] for
other references to b,(x) and B,(x).)

It is the purpose of this short paper to give a brief account of a closely related sequence of
polynomials {O”(x)} with particular emphasis on the case » = 0. Necessarily, a formula corre-
sponding to (1.5) will have to be discovered.

For ready comparison and contrast with the contents of [1], it seems desirable to present this
material in a partially similar way. Before proceeding, however, we need to add the following
items of information.
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Lemma1: af%-a®,,=af)+a?, (nz2).

Proof: (n;;ck) + G’ k++k1) = (nﬁk+4il) by Pascal's Theorem,
ie., (n;}ck) + (n +212_ l) + (n;}(k;—l l) = (an;{k_;; 1) by Pascal's Theorem,
e (n+k)+(n+k—1)=(n+k+l)_(n+k—l)
2k 2k 2k+1 2k+1 )
Use (1.5) for » =0,r =1, and the Lemma follows by Pascal's Theorem.
When 7 =2 in (1.1), then PZ)(x) is found to be

PR = 6,0 = 205,

(1.9)

where c,(x)—given in terms of Morgan-Voyce polynomials—has been introduced independently

by me is a paper currently being written in which it is also demonstrated that
cn+l(x) - cn(x) = Cn(x) >
in which C,(x) is to be defined in (2.11).

2. THE POLYNOMIALS {0 (x)}

Define, as in (1.1), a polynomial sequence {Q”(x)} recursively by
OP(x) = (x+2)00 () - O (x)  (n22)
with
o) =2, O (x)=x+r+2.
Then a sequence of integers {b{)} exists such that
0 = Y B,
k=0

where

b(r) _ 1 (n 2 1)7
2 (n=0).

Now 5 = 0¢°(0). By (2.1) and (2.2),
by =260 0= (122)

with
b} =2,
By =2+r by(22).
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Following [1], we deduce that (7 > 0)

b =2+nr, 2.7
whence
B =2 (2.8)
and
by =2+n. (2.9

Comparison of coefficients of x* in (1.1) leads to the recurrence (n>2, k > 1)
BOL =260, + B0 =B (2.10)

Table 1 displays a triangular arrangement of the coefficients b,g’,)c This ought to be compared
with the (preferably extended) table in [1] for the coefficients a,(,,’ ).

TABLE 1. Coefficients b7}, of 0{”(x)

Ao 1 2 3 4 5
0o | 2

1 2+r 1

2 2+42r 4+r 1

3 2+4+3r 9+4r 6+r 1

4 |2+4r 16+10r 20+6r 8+r 1

5 |2+45 254200 50421 35+8 1047 1

Next, we introduce the important symbolism
O (x) = C,(x). (2.11)
Using Table 1, we may now write out the expressions for Cy(x), C,(x), C,(x), C5(x),.... Some
properties of C,(x), especially in relation to Lucas polynomials, appear in [2].

3. CONNECTION BETWEEN {P()(x)} AND {Q{”(x)}

Inherent in the nature of the laws of formation of {P"(x)} and {0 (x)}—namely, (1.1),
(1.2), (2.1), and (2.2)—is the inevitably close connection between a(}, and 5{").
Typically, for example,
b} =50+21r =(35+21r)+15 =af) +af)

G.1)
B3 =112+36r =(84+36r)+28 = a} +af}.

These illustrations suggest the nature of the constant (for which r = 0) by which 5}, exceeds a{’}.

Itis a®,.
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Theorem 1: b{) =al)+a%, (nz=1)
n+k) (n-1+k +k
:( iy )+( ot )+r(5’k+1) by (1.5).
Proof: Follow the inductive proofin [1] for a,([ ), using the binomial coefficients and (2.10).

The occurrence of the middle (extra) binomial term causes no complication.
[Alternatively: Subtract (1.6) from (2.10) and use induction. ]

Combine the first two binomial coefficients in Theorem 1 to derive

cpn = (n-ltk) L (ntk
Corollary 1: b, = k( 2k -1 )+r(2k+1 '

Multiply both sides of Theorem 1 by x* and sum. Immediately, from (1.3) and (2.3), we
infer the fundamental polynomial property associating O (x) with P (x).
Theorem 2: O (x) = PO(x)+ PO(x) (n>1).
Fixing 7 = 0 in Theorem 2 and using (1.7) and (2.11), we deduce
Co(x) = b,y (¥) + 5,(x) - ‘ (3-2)

Evaluating in Theorem 2 when x =1 produces a nice specialization. Already [1] we know
that, for Fibonacci numbers,

Pn(r)(l):PénH*_rF‘Zn' (33)
Application of (3.3) enables us to get the following two useful subsidiary results for Fibonacci and
Lucas numbers from Theorem 2 when x =1.
Corollary 2: O (1)=L,, +rF,,.
Proof: O(1) = PO(1) + PO(D) by Theorem 2
= 6n+1 +rFén +En—1 by (33)
= L, +1F,,.
Corollary 3: OV (1)=2P%(1).
Proof: O%(1) = F,,,,+(Qu+1)F,, +F,,_, asin Corollary 2 (r = 2u+1, odd)
= 2(P;n+l + upén)
=2P"(1) by (3.3).

Thus,
O () =25"(1) =25, =2b,,, (4
QS)(D = 2}11(1?(1) =280 =28, (3.5)
0P () = 2B () = 2L,y = 26, (3.6)
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Conventional symbolism b,(1)=5,,... has been employed in (3.4)-(3.6). Even superscript
values of 7 in Corollary 2 do not, in general, appear to produce neat or interesting simplifications.
However, by Corollary 2, (2.11), and [2], we do know that

OPM)=C, =1Ly, G

Worth recording in passing is

Qf)(l) = Fypy3 = by (3.8)

4. CONNECTION BETWEEN 0”(x) AND B, (x)

Lastly, the link between our polynomials and the Morgan-Voyce polynomial B,(x) is
described.

Theorem 3: QS’) (x) = Bn+l(x) - Bn—l(x) .

Proof: Qﬁo)(x) = zn:bﬂxk by (2.3) (r=0) O
k=0

a}S?I?: +a£,g)1, k by Theorem 1 (r = O)

It
M=

=
It

0

Il
M=

(af,f}c -a,,) byLemmal

=~
H

0
PO(x)- BY(x) by (13)
= Bn+l(x) - Bn—l(x) by (18)

Il

Corollary 4: C,(x) =B,,(x)—B, (%) by (2.11), Theorem 3

"_ln n—1+k\ & n H
:z;( v )x +24%" by (i), (2.4), (2.8), (2.11), Corollary 1.
k=0

The property embodied in Corollary 4 means that B,(x) and C,(x) form another pair of
cognate polynomials which can be incorporated into the synthesis [3], to which all the theory
therein applies, e.g.,

B,(x)C,(x) = B,,(%), “4.1

20,00 =B, (). @2)

S. CHEBYSHEV POLYNOMIALS

Polynomials P’ (x) are shown [1] to be related to U,(x), the Chebyshev polynomials of the
second kind. In particular, with an adjusted subscript notation,

sin nt x+2
B = =
() =" U,,( 5 ) (5.1)
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where

x+2=2c0s¢t.
Now, by Theorem 3, Corollary 4, and (5.2),
OP(x) =C,(x)= Byua(x) ~ B,y (¥)

_ sin(n+ 17 —sin(n — 1)1
sin ¢

=2cosnt

_ 2];(x+2)’
2

where T (x) are the Chebyshev polynomials of the first kind.

(5.2)

(5:3)
(5.4)

More generally, we construct the law relating 0% (x) to the two types of Chebyshev polyno-
mials. Needed for this is a pair of known results involving Chebyshev polynomials (our notation):

x+2 x+2

£00)= U 552 e 000, 212) by 1

2L,(0) = U,y (x) = Ui ().

Theorem 4: O\ (x) = ZZ;(X Z 2)+ rUn(x er 2).

Proof: 0 (x) = PO(x)+ P9 (x) by Theorem2 (n>1)

- U,,+l(x;2)+(r—l)Un(x;2)+Un(x;2)—U,,_l(x;2) by (5.5)

_ Un+1(x +2)_ Un_x(x +2)+rUn(x+2)
2 2 2

:2Tn(x‘2*2)+rU,,(x;f2j by (5.6).

Zeros

Zeros x, (k=1,2,...,n) of C,(x)=0P(x) are, by (5.4), tied to the zeros of 7,

xk+2:2cos(2k_l-%) (k=12,...,n)
n
implying
. o261 &
=—4sin® ] ==—-=| (k=12,...,n).

(5.5)
(5.6)

). Thus,

(.7

For instance, the 3 zeros of Cy(x)| = 25(%2)| = x® + 6x* +9x +2 = (x + 2)(x* +4x + 1) are

2
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x, =—4 sinl(li;—), -4 sinz(g) =-2, -4 sinz(i—g) (k=1,2,3).

Zeros of P (x) (r=0,1,2,...,n) are given in [1].

EPILOGUE

Together with the Morgan-Voyce polynomials 4,(x) and B,(x), the polynomials ¢,(x) and
C,(x) constitute an appealing quartet of polynomial relationships which form the subject of my
paper alluded to following (1.9). Here, they exhibit a nice simplicity amid complexity, a cohesion
and unity amid diversity.
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