
P O L Y N O M I A L S ASSOCIATED W I T H G E N E R A L I Z E D 
MORGAN-VOYCE P O L Y N O M I A L S 

A. F. Horadam 
The University of New England, Armidale, Australia 2351 

{Submitted December 1994) 

1. PROLOGUE 

Andre-Jeannin [1] recently defined a polynomial sequence {P£r\x)}, where r is a real num-
ber, by the recurrence 

i*r)(*) = (* + 2)/£>(*)-/£>(*) (n>2) (1.1) 

with 

P0
(r)(x) = 1, I*r\x) = jc+r + l. (1.2) 

Furthermore [1], a sequence of integers {afy} exists for which 

P}r\x) = £a%xk, (1.3) 

where 

a£>=l (»>0). (1.4) 

He also proved [1] the crucial formula (n>0,k >*0) 

and the recurrence 

< 1 t = 2 ^ u - ^ u + f l £ ? u - i ( » ^ 2 ^ > 1 ) . (1.6) 

Simple instances of i^(r)(x) are [1], with slightly varied notation, 

P£l(x) = bn(x) (»>1) (1.7) 

and 
i£{(*) = £„(*) (»>1), (1.8) 

where #„(#) and 5„(x) are the well-known Morgan-Voyce polynomials [4]. (Please see [1] for 
other references to bn(x) and Bn(x).) 

It is the purpose of this short paper to give a brief account of a closely related sequence of 
polynomials {Q^\x)} with particular emphasis on the case r - 0. Necessarily, a formula corre-
sponding to (1.5) will have to be discovered. 

For ready comparison and contrast with the contents of [1], it seems desirable to present this 
material in a partially similar way. Before proceeding, however, we need to add the following 
items of information. 
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Lemmal: « & - « & . * = < $ + a < ? u (n>2). 

Pro°f: ^2k) + {$k + \)^2k + \ ) by Pascal's Theorem, 

+ { 2k +1 ) = { 2k+ 1 J by Pascals Theorem, i e " I 2k ) + { 2k 

(n + k \ (n + k - i\ _ f n + k +1) _ (n + k -1 
l'e'\ [2k y{ 2k )-{2k + l J {2k + l 

Use (1.5) for r = 0, r = 1, and the Lemma follows by Pascal's Theorem. 

When r = 2 in (1.1), then PW
(3(JC) is found to be 

Pn(x) = cn(x)J^(x)-b^(x) (n>l), (1.9) 

where cn(x)—given in terms of Morgan-Voyce polynomials—has been introduced independently 
by me is a paper currently being written in which it is also demonstrated that 

c„+1(x)-c„(x) = C„(x), (1.10) 

in which Cn(x) is to be defined in (2.11). 

2, THE POLYNOMIALS {Qir)(x)} 

Define, as in (1.1), a polynomial sequence {Qjf\x)} recursively by 

&\x) = (x + 2)$2l(x)-Q£2(x) (»*2) (2.1) 

with 

$f\x) = 2, $rHx) = x+r + 2. (2.2) 

Then a sequence of integers {bfy} exists such that 

#>(*) = 2>#**, (2-3) 
A:=0 

where 

« = {' ?** 0.4, 
[2 (n = 0) 

Nowft$ = QW(0). By (2.1) and (2.2), 

^ = 2 ^ , 0 - ^ 2 , 0 ( « ^ 2 ) (2.5) 

with 

f/?(r) - 2 

k( r
0

)=2 + r by (2.2). 
(2.6) 
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°n,0 ~ 

°n,0 

A(l) -°n,0 ~ 

2 + nr 

= 2 

2 + n. 

Following [1], we deduce that (n > 0) 

whence 

and 

Comparison of coefficients of xk in (1.1) leads to the recurrence (n > 2, k > 1) 

un, k - AUn-\, k ^ un-\, k-l un-2, k • 

Table 1 displays a triangular arrangement of the coefficients bfy. This ought to be compared 
with the (preferably extended) table in [1] for the coefficients ajfy. 

TABLE 1. Coefficients 6 $ of (£\x) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

n ^ x 
0 
1 
2 
3 
4 
5 

0 
2 

2+r 
2 + 2r 
2 + 3r 
2 + 4r 
2 + 5r 

1 

1 
4+r 
9 + 4r 

16 + 10r 
25 + 20r 

2 

1 
6 + r 

20 + 6r 
50+21r" 

3 

1 
8 + r 

35 + 8r 

4 

1 
10+r 

5 ••• 

... 

1 ••• 

Next, we introduce the important symbolism 

Qf\x) = Cn(x). (2.11) 

Using Table 1, we may now write out the expressions for C0(x), Q(x), C2(x), C3(x),.... Some 
properties of C„(x), especially in relation to Lucas polynomials, appear in [2]. 

3. CONNECTION BETWEEN {PJr)(x)} AND {Q(
n

r)(x)} 

Inherent in the nature of the laws of formation of {P}r\x)} and {Q„r\x)}—namely, (1.1), 
(1.2), (2.1), and (2.2)—is the inevitably close connection between a£{ and bfy. 

Typically, for example, 

(6<;2> = 50 + 21r =(35 + 21r) + 15 =4r2}+«4? 
i£> = 112 + 36r =(84 + 36r) + 2 8 = ^ + a ' 

,(0) 

-(0) 
(3.1) 

These illustrations suggest the nature of the constant (for which r = 0) by which b%\ exceeds a%\. 
Itisaf_>u. 
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Theorem 1: b<& = a^k +af\k (n > 1) 

(n + k}, (n-\ + k\ , (n + k\ , ,, 0 = {2k) + { 2k J + r(̂ 2A: + lJ byCl-5). 

Proof: Follow the inductive proof in [1] for afy, using the binomial coefficients and (2.10). 
The occurrence of the middle (extra) binomial term causes no complication. 

[Alternatively: Subtract (1.6) from (2.10) and use induction.] 

Combine the first two binomial coefficients in Theorem 1 to derive 

Corollaryl: b% = | ( V * - * ) + r(^l) 

Multiply both sides of Theorem 1 by xk and sum. Immediately, from (1.3) and (2.3), we 
infer the fundamental polynomial property associating Q^\x) with P£r\x). 

Theorem 2: Q%\x) = Pf\x) + P^\(x) (n > 1). 

Fixing r - 0 in Theorem 2 and using (1.7) and (2.11), we deduce 

C„(x) = Z>„+1(x) + £„(x). (3.2) 

Evaluating in Theorem 2 when x = l produces a nice specialization. Already [1] we know 
that, for Fibonacci numbers, 

e ) 0 ) = ̂ + i + ̂ 2„- (3-3) 
Application of (3.3) enables us to get the following two useful subsidiary results for Fibonacci and 
Lucas numbers from Theorem 2 when x = 1. 

Corollary 2: ^\l) = L2„+rEhl. 

Proof: e^)(l) = JP„(r)(l) + JP„(°Kl) by Theorem 2 
= F2n+i+rF2n+F2n^ by (3.3) 

Corollary 3: Gf M+1)(1) = 2P„(H)(1). 

Proof: Qf M+1)(l) = F2n+1 + (2w + \)F2n + F2n_x as in Corollary 2 (r = 2« +1, odd) 
= 2(F2n+l + uF2n) 

= 2P}»\T) by (3.3). 

Thus, 
QV\l) = 2PV\\) = 2F2n+l = 2bn+l, (3.4) 

g f (1) = 2i*>(l) = 2F2n+2 = 2Bn+l, (3.5) 

e f ( l ) = 2pW(l) = 2Z7n+1 = 2c„+1. (3.6) 
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Conventional symbolism bn(V)-hn,... has been employed in (3.4)-(3.6). Even superscript 
values of r in Corollary 2 do not, in general, appear to produce neat or interesting simplifications. 
However, by Corollary 2, (2.11), and [2], we do know that 

a°\l) = Cn = L2n. (3.7) 
Worth recording in passing is 

ef)(i)=^„+3=*n+2- (3.8) 

4. CONNECTION BETWEEN (£0)(JC) AND BH(x) 

Lastly, the link between our polynomials and the Morgan-Voyce polynomial Bn(x) is 
described. 

Theorem 3: Qf\x) = Bn+l{x)-Bn_l(*)-

Proof: £ f (*) = £ * $ * * by (2.3) (r. = 0) (i) 

= S « l +<£U by Theorem 1 (r = 0) 

= Z « 1 l - ^ 2 . * ) by Lemma 1 
k=0 

= i*>(x)-/££(*) by (1.3) 

= 2?„+1(x)-JBn_1(x) by (1.8). 

Corollary 4: C„(x) = Bn+l(x) - B^x) by (2.11), Theorem 3 

= "tj{n2k-iky+2+x" by<*>> <2-4>' <2-8)' <2-n)- C o r o l I a ry i-
The property embodied in Corollary 4 means that Bn(x) and C„(x) form another pair of 

cognate polynomials which can be incorporated into the synthesis [3], to which all the theory 
therein applies, e.g., 

B„(x)C„(x) = B2„(x\ (4.1) 

^-C„(x) = nB„(x). (4.2) 

5. CHEBYSHEV POLYNOMIALS 

Polynomials P^(x) are shown [1] to be related to U„{x), the Chebyshev polynomials of the 
second kind. In particular, with an adjusted subscript notation, 
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where 
x + 2 = 2cosf. (5.2) 

Now, by Theorem 3, Corollary 4, and (5.2), 

Q?\x) =C„(x) = B„+1(x)-B„_l(x) 

_ sin(n +1)/ - sin(n - l)t 
sint 

= 2 cos nt (5.3) 

= 2T(^\ (5.4) 

where Tn(x) are the Chehyshev polynomials of the first kind. 
More generally, we construct the law relating Qj[\x) to the two types of Chebyshev polyno-

mials. Needed for this is a pair of known results involving Chebyshev polynomials (our notation): 

pM(x) = f / „ + 1 ^ j + ( r - l ) C / „ ^ j by[l]; (5.5) 

2T„(x) = Un¥l(x)-Un_1(x). (5.6) 

Theorem* &\x) = 2 7 „ ^ j + r t / „ ^ 

Proof: Q%Xx) = P};rXx) + pV\{x) by Theorem 2 (»>1) 

= Un{^)Hr-w{^) + u{!f)-V„_{?f\ by(5.5) 
TT (x + 2\ TT (x + 2\ Trfx + 2 

=u"{—)-u-{—)+rU{— 
= 2 r / ^ l + rt//^l by (5.6). 

Zeros 
Zeros xk (k = 1,2,...,«) of C„(x) = Qf\x) are, by (5.4), tied to the zeros o f ^ ( ^ ) . Thus, 

x i +2 = 2 c o s ( ~ ^ £ ) (Jt = l,2,...,/i) 

implying 

* * = ^ ™ t ^ r f ) (*=i>2> •••>")• (5-7> 
For instance, the 3 zeros of C3(x)[ = 22j(^)] = x3 + 6x2 + 9x + 2 = (x + 2)(x2 + 4x +1) are 
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** = - 4 s i n t f 0 - 4 s i n t?) = -2' - 4 s i n t f ) ^ = 1'2'3>-
Zeros of P„(r) (x) (r = 0,1,2,..., n) are given in [1]. 

EPILOGUE 

Together with the Morgan-Voyce polynomials hn(x) and B„(x), the polynomials cn(x) and 
Cn(x) constitute an appealing quartet of polynomial relationships which form the subject of my 
paper alluded to following (1.9). Here, they exhibit a nice simplicity amid complexity, a cohesion 
and unity amid diversity. 

REFERENCES 

1. R. Andre-Jeannin. "A Generalization of Morgan-Voyce Polynomials." The Fibonacci Quar-
terly 323 (1994):228-31. 

2. R. Andre-Jeannin. "A Note on a General Class of Polynomials, Part II." The Fibonacci 
Quarterly 33A (1995):341-51. 

3. A. F. Horadam. "A Synthesis of Certain Polynomial Sequences." In Applications of Fibo-
nacci Numbers 6 (in press). 

4. A. M. Morgan-Voyce. "Ladder Networks Analysis Using Fibonacci Numbers." I.RE. Trans-
actions Circuit Theory 6.3 (1959):321-22. 

AMS Classification Number: 11B39 

348 [AUG. 


