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1. INTRODUCTION

One version of a discrete Fourier transform pair based on N equally spaced sample points is
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where x, = f(mT):m=0,1,2,..., N—1 for a given temporal function f(¢) of appropriate form,
where T is the sampling interval in the time domain.

2. EXAMPLE

James et al., in [1], consider the function
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with N =10and 7=1/5 sec, for which the discrete Fourier transform, computed according to
(1), reduces to
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3. MATRIX FORMULATION

It is especially interesting, however, to give a ten point FFT analysis, where the complex
exponentials are tenth roots of unity that involve the golden ratio 7 = (1++/5)/2, which itself is
the positive root of the quadratic equation 72 —7—1=0. By expressing results initially in terms
of 7, rather than decimal numbers, we are able to appreciate deeper symmetries in the FFT.

By writing @ = %= %( - j517 ), a tenth root of unity, the matrix representation of the
first of (1) is as shown in (3) below, where the various powers of @ are, with asterisks denoting

complex conjugates:
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o = —(/7-ja) —0®, of = (1/7+ ja) — 0 o = (t+ja) — 0" @)
2 : 2 2
where a = W, see [2],
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4. FACTORIZATION

To factor the matrix in (3), we adopt the approach used in [1], noting first that N =10=2x5
is composite, with factors , =2 and , = 5. Putting

n=2nm+n,. n=0,1 m=0,1234,
m=5m-+m: my=0,1234, m=0,1

we can write the simultaneous system (3) as
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Setting
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5’"0"0 = Zxan+noa)2nlmo THy = O, 1; my = 0’ 1’ 2, 3) 4’ (5)
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then leads to a set of simultaneous equations, summarized in matrix form by
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5. SOLUTIONS

Inserting the appropriate powers of @, summarized in (2), into the linear system (6), leads to
the following results:
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Returning to the system (4) we see that, with (5), we can write

s smy = Zf @®M ey =0,1,2,3,4; my=0,1

> myhy
ny=0

6. NUMERICAL RESULTS

Expansion leads to

%y =g+ &y =6/5=12,

%, = &g+ &0 = —jN5T /5= = j0.9959593,

X, = &y + &y = —7* /5=-05236068,

%y = &+ &@° = j5 /1 = j0.0898055,

X, = &g+ Eg0* =—(1/7%)/5=-0076392,

Xs = oo+ 5010)5 =0,

X =&+ E0° =% = —(1/7%)/5=-0076392,

%, =+ &0 =% = —jN5 /70 = —j00898055,
Y= &g+ &0t =X, = -1/ 5=-05236068,

%y = £y +Eg0° = % = jAlVB/ 5= j09959593,

Multiplying each of these by 7'= 02 gives James et al.'s final results (see [1]).
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