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1. INTRODUCTION 

We intend to study some sequences of real numbers which are obtained as follows: take a 
natural number TV and a real number a and form the sequence s(N,a) = (a0,al,a2,...,ak,...), 
where the numbers af are defined by 

\2an_l if 2an_x <N+n, (1) 
an ~ i 

\2an_x ~(N+n) otherwise. 
The sequences arise from certain nonstandard expansions of real numbers that are discussed in 
Sections. 

It is very easy to study these sequences by computer. This is what we did, and which led us 
to the following 

Conjecture 1: When a is an integer e[0, N + 2), the sequence s(N, a) will end in a sequence of 
zeros. 

We verified the truth of this statement for all N < 2 000 000. 
In the next section we shall show that there is also some "probabilistic" evidence for this 

conjecture. In Section 3 we shall see that the conjecture has some "heuristic evidence." Finally, 
we shall conclude with a discussion of some other aspects of the problem. 

2, PROBABILISTIC EVIDENCE 

Consider a sequence s(N,a) = (a0,al,a2,...,ak,...), where TV is a natural number >2 and 
a ~ a0 e(0, N + 2] and where the ak are obtained by the relations (1). 

If a < 0 , then ak=2ka; if a = N + 2 + J3 (J3> 0), then ak = N + k + 2 + 2k for all it. Thus, 
the behavior of s(N, a) is "sufficiently known" for such a. 

I f0<a<7V>2, then it is easy to show that every ak is in [0, N + k + 2). 
Indeed, this is obvious when k - 0. Suppose it is true for some k > 0. Then 

• whena^+1 ~2ak, wehave ak+l <N+ k + l<N+ k + 3, 
• whm ak+l = 2ak - N - k -1, thm ak+l<2(N + k + 2)- N - k -1 = N + k + 3. 

Therefore, our assumption follows by induction. 

Now, let a be an integer in (0, 7^ + 2). Then it is easy to verify that ak will be in the interval 
[0, N + k) as soon as k > 2. Further, we obviously have 

ak = 2ak_{ mod(N + k) Vk > 1, 
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whence ak will be even as soon as N + k is (k>0). Thus, ak=0 (smallest k) implies N + k 
even. It is also not difficult to see that we can restrict our attention to sequences with even N = 
2M, so that in the w-tuple (a2,a4, ...?a2n) the a2i are even integers in the interval [0, N + 2i). If 
they would behave like "random," the probability that none of them equals 0 is easy to compute. 

Indeed, the total number of w-tuples (bh h2,..., bn) with hi e JVn[0, 2 M + 2J), bt even, is equal 
to the product (M +1) • (M + 2) • •• • • (M + n), while the total number of such w-tuples where no bi 

is zero equals M • (M +1) • • • • • (M + n -1). Thus, the chance for such an w-tuple not to contain 0 
is 

M{M + l)-{M + n~l) _ M 
(M + l)(M + 2)>-(M + n)~ M + n' 

Clearly, this number tends to 0 if w tends to infinity. 
We include a small table in which the reader may find some numerical results concerning the 

"randomness" of the ar 
N 
100 

200 

300 

500 

1000 

2000 

4000 

8000 

IN 
925.9 

5902.3 

9999.3 

9993.6 

10610.8 

7389.8 

11885.0 

5513L3 

IN 
693.9 

2016.5 

2307.2 

8802.7 

57013 

50789.5 

69030.1 

95802.9 

Here, lN is the arithmetic mean of the numbers la that are defined as the smallest number k for 
which ak is 0 (a = 1,2,..., # - 1 ) . 

The number l^ is the arithmetic mean of 1000 numbers l'N, which has the same meaning as 
the lt but where the ak are chosen at random in [0, N + k). Note that the Ij will vary from one 
time to another. The reader who wishes to verify these numbers will probably not find the same 
ones. 

3* SOME NONSTANDARD EXPANSION OF NUMBERS 

First, note that a necessary condition for the sequences s(N, a) to end in a string of zeros is 
that a is a rational number with denominator of the form 2r, for some t eN. Indeed, the equal-
ity ak = 0 (for some k GN 0 ) implies ak = 2ak_l-N-k^ which means that ak_l is a rational num-
ber with denominator 2. From this it follows immediately that ak_2. must be a rational number 
with denominator 4. Continuing this proves our assertion. 

In what follows, we shall discuss an "expansion of real numbers" that is (in some way) simi-
lar to what is known as "binary expansion." 

Theorem-1: Every real number a in the interval [0,2] can be written as an infinite sum 
^ k ot = 2^$k —, where the Sk are 0 or 1. (2) 
i 2 
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This is a special case of a more general theorem of Brown [1] that reads as follows: 
If {/;.} is a non-increasing sequence of real numbers with lim .̂ = 0 and {&,.} is an arbitrary se-

quence of positive integers then every real number x in the interval [0, Z ^ ktr;] can be expanded in the 
form x = E,t, Ptrn where the /?,. are integers satisfying 0 < fif < kn for all i, if and only if rp < T^=p+X ktr. 
forall/?>l. 

The reader may verify that the conditions of this theorem are fulfilled when rt -H2\ k}< = 1. 
However, to see the connection with the sequences mentioned in the introduction, it will be con-
venient to give a proof of this particular case. 

Before doing so, notice that when the sum in (2) is finite, a will be a rational number with 
denominator of the form 2f, t G N 0 . About the converse, we state 

Conjecture 2: Every rational number whose denominator is a power of 2 has a finite expansion 
(2). 

We shall see that Conjecture 1 implies Conjecture 2. This implies that our numerical investi-
gations provide a proof for the fact that every rational number in [0,2] whose denominator is 2*, 
t < 2 000 000, can he expanded as a finite sum (2). 

Proof of Theorem 1: Let us abbreviate the numbers k I2k as uk. First, note that the series 
T^ uk converges to 2. This follows from the equality 

- ^ = f y (*e[o,i)) 
1 x k=o 

which gives, after differentiation and multiplication by x, 
1 °° 

X' 7s~ — / KX 

(i-*)2 h 
Taking x = 1/2 gives the desired result 

It is also clear from this that any series of the form (2) converges. 
Now let a be an arbitrary element of (0,2) (the case a - 0 or 2 is trivial). We define the 

numbers Sk and the numbers Bk as follows: 
If a > ux (= 1/2), then 5X = 1, else S1 = 0; Bx -a-8^. 
If Bx > ̂  (= 2 / 2 2 ) , then S2 = 1, else S2 = 0; B2 = B^S^. 
If B2>u3 (= 3 /2 3 ) , then S3 = 1, else £3 = 0; B3 = B2 -S3u3. 

Our algorithm produces the digits Sk by a so-called greedy expansion. 
It suffices to show that the sequence (Bl7 B2,...) has limit 0. To do so, put 

a0 = a, 

ak=2kBk (£ = 1,2,...). 

Then it is clear that we have ak+l = 2ak - Sk+l (k +1), whence, by the definition of the 8k: 

\2ak i f < £ + l, 
[2ak - (k +1) otherwise. 
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Since, previously, we noted that every ak is in [0, £ + 2), we have Bk e[0, ^ ] , which 
completes the proof. 

Note also that if one of the numbers Bt is zero, then so are all Bj when j > i; note further 
that the expansion is not "unique." To see this, define numbers r/k and numbers B'k in the follow-
ing way: 

If a > ux (= 1 / 2), then /ft = 1, else % = 0; B{ = a- rftul9 

1£B[> u2 (= 2/22), then t]2 = 0; 5^ = B{-7]2u2, 
If JSJ > W3 (= 3/23), then y/3 = 0; £; = 5^ - ^ 3 , 

thus constructing a sequence 5j of real numbers none of which will ever be zero. 
The corresponding numbers ak (= 2kBk) then satisfy a slightly different recursion, namely, 

[24 i f < * + l, 
\2a'k - (A: +1) otherwise, 

so that in this case ak+l might be in the interval (0, k + 3] ... . 
The proof of the theorem leads to the construction of a sequence s(N, a) with a-a and 

N = 0 as defined in the introduction. 
Now, suppose a G[0, 2] is a rational number of the form k 12m with k, m eN0. Then at is a 

rational number with denominator 2m~l (i = 1,2,..., /w) and will be an integer for i>m. From the 
proof, it is also clear that at is in the interval [0,2 +/). It is also easy to see that at is in the inter-
val [0,1) when i>m + l. 

Thus, to see if every such a has a finite expression (2), it suffices to see if every series 
s(N, a) with N <m and a an integer in the range 1,2,..., N -1 will "end" in zeros. We took N = 
2 000 000 and found aK = 0 for some K < 4 588 298 126 (the computations took several hours on 
a fast PC)., 

Since the expansion (2) is not unique, it is possible that Conjecture 2 is true even if Conjec-
ture 1 should prove false. 

4. OTHER ANALOGS WITH BINARY EXPANSIONS 

There is another analog of the expansion (2) with "binary expansions." Consider a number a 
such that the 8k are periodic, i.e., there exists a nonzero natural number p such that 

Sk = Sp+Jc 0) 

for all k GN. In such a case, we have 

Theorem 2: a is a rational number. 

Proof: Define the polynomial v(x) as Z/Li ̂ .x' and the real function <p(x) as E£i £,•*'. By 
the periodicity of the Sn we have 

±s,*^ sykp+ 
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q>(x) = v(x) + xpv(x) + x2pv(x) + • • • = v(x) - . 

Differentiation and multiplying with x gives 

* P (*) = L 5tlx = — n Y /v • 
/ = ! I 1 " 1 i 

Putting x = 1 / 2 yields 
g = v - q / 2 ) 2 ^ + ^ v a / 2 ) a 

2 / ? - l ( 2 ' - l ) 2 W 

It is easy to see that the numerators of the two fractions are both integers, which proves the 
theorem. 

As to nonpure periodic expansions [this happens when the relations (3) are true for all k > 
some m], it is not difficult to show that these a differ from some purely periodic number by a 
rational number with 2m in the denominator. 

It should be noted also that the pure periodic expansion of a number is in general not the one 
obtained by the greedy procedure explained in the proof of Theorem 1. For instance, if we take 
a to be 8/9, the sequence (Sk) in Theorem 1 would be the nonpure periodic 

(1,0,1,0,0,0,0,0,0,1,0,1,0,1,0,1,0,...) 

while we have the equality 
8 = ^ 2k 

which is obviously pure periodic. 
The converse of Theorem 2, however, is not true. This is seen by examining the second 

fraction in (4). Its numerator equals 8{2p~l + S22P~2 + •••+£ which can be any of the values 0, 
1, 2, 3, ..., 2p~l. However, this is not sufficient to cancel enough factors of the denominator to 
yield any prescribed denominator. For instance, the number 1/3 is never equal to any periodic 
expression (2). 

This may be considered as a (weak) argument that Conjecture 1 could fail to be true. 
Remark: The number 2 plays a special role in all of the preceding in the following way. Con-
sider series of the form 

fX*c* (ce[0,l)) (5) 
where the Sk are 0 or 1. 

It is clear that such a series converges to a number of the interval [0, A] 

A = J]kck- C 

Using these notations, we can prove 
*.i ( i - c ) 2 ' 

Theorem 3: Every real number in the interval [0, A] can be expressed as a sum (5) if and only if 
CG[1/2,1). 
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The proof Is an Immediate consequence of Brown's theorem applied to this case. Indeed, 
Brown's theorem states that every real number In the interval [0, A] Is expressible as a sum (5) If 
and only If 

00 f 00 \ ( p \ 

pcp< £*e*=cH£(pc'+jc')' = c I + — ~ ~ i ' yPGN-
k=P+i V/=i J \l-c (l-c) ) 

This Is equivalent to p(2c - l)(c - 1 ) < c, \fp G N, and this holds if and only If c e [1 / 2,1). Q.E.D. 

Therefore, extensions of our results when c Is-of the form 1 / / I , « G N , « > 2 are not very likely 
to hold. 

It is worthwhile to note that the number 2 has a similar role when looking at expansions of 
real numbers In the form 

00 

]T Skck (c E [0,1)), where the 8k are 0 or 1 

(which includes binary expansions). In the same way as above, we obtain 
Theorem 4: Every real number In the Interval [0, A] can be expressed as a sum J^=l Skck if and 
onlylfce[l /2, l) . 

This theorem has a surprising geometric interpretation. Consider for every infinite string 
8 = (Sl952,S3,...); ^ = 0 o r l 

a real function <ps{x) defined by 
CO 

k=l 

Clearly, one has 0 < <ps(x) < ~^, Vx e[0 ,1) . Now, by Theorem 4, every point of the unbounded 
set {(a, b) 10.5 < a < 1; 0 < b < p ^ } belongs to at least one curve y - <p5{x), while some points of 
the bounded region {(a, b) |0 < a < 0.5; 0 < b < -~^ may fail to He on any such curve. An example 
of such a point is ( 1 / 3 , 2 ) , where X Is a positive real number less than 0.5, whole ternary 
expansion contains a two. 
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