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1. INTRODUCTION

As an application of Lagrange inversion, Riordan [9] gave the following expansions:

exp(bz) = é——————b (ak ;!b )™z expl-an); (1.1)
eﬁ(jj) = :) L ,:,b)k (zexp(-az))"; (1.2)
(1-2)° :éakbw(ak;b)(u fz)a)k; (13)
(llj ;)b _ ; (akk+ b)((l fz)a ]". (14)

Starting from these identities, Gould ([3], [4]) obtained various convolution identities.
The multivariate case of (1.2) and (1.4) was obtained by Carlitz [1] using MacMahon's "master
theorem."

Using other methods, Cohen and Hudson [2] gave bivariate generalizations of (1.1) and (1.2)
that are different from those of Carlitz.

Krattenthaler [5] showed that the preceding formulas are a consequence of his bivariate
version of Lagrange inversion; furthermore, he has generalized (1.3) and (1.4).

One must note that we do not need to use Lagrange inversion in two variables to prove these
types of identities, as Krattenthaler did, but need only use Lagrange interpolation, which is a much
simpler tool.

Lagrange interpolation must be considered as describing the properties of a linear operator
sending a function of one variable to a symmetric function. It can be written as a summation on a
set or as a product of divided differences; it is this latter version that we shall use here. In fact, in
Section 2 we give the four Lagrange interpolation formulas, (2.1)-(2-4), that contain many of
Krattenthaler's identities as special cases. In Section 3 we show how our Lagrange interpolation
formulas can even be used to derive g-analogs of these identities.

2. MULTIPLE INTERPOLATION

Let A={a,,a,,a;,...} and B={b,b,, b;, ...} be two alphabets and let x, ¢, and { be three
bivariate functions of x and y. For all positive integers m and n, put
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Ky(m, n, x, y) = x(x, y)($(x, )" (€ (*, »))",
Ky(m, n, x, y) = k06, NP, Y)n(SCE D)o
Ky(m, n, x, y) =(x, y)(¢(x, )" (5(x, Y)n»
K(m, 1, x, y) = k(x, p)(60x, ), 9D,

where (@} ln =ala-D(a-2)---(a-n+1).
Lagrange interpolation generally stated that, for any function of one variable x, and "inter-
polation points" b, ¢, d, ...

J(x) _ S () + f(©)
(x=b)x-c)x-d)--- (x-b)b-c)b-d)--- (x—c)c—b)c—-d) -
f(d)

+ remainder.

(x—d)d-b)d—0)

We shall only need the Lagrange interpolation formula, but written in a symmetrical manner. It is
more satisfactory to consider the set 4 ={x, b, c, ..., d} and write

Z R f@ = remainder,
5= R(a, A\a)
where R(a, A\a) is the product [],_ (a—a').

In other words, Lagrange interpolation amounts to considering properties of the linear opera-
tor f — 2,4 f(@)/ R(a, A\a). This operator sends a polynomial of degree k to a symmetric
polynomial in 4 of degree & —n, with card(4) =n+1. In particular, it annihilates polynomials of
degree < n, and maps f(x)=x" to the constant 1.

These properties suffice to characterize the Lagrange operator.

If ¢(x,y,z,..) is a polynomial, the difference ¢(x,y,z,...)—¢(y,x,z,...) is divisible by
x—y. Following Newton, for any pair of variables (x, y), one defines a divided difference opera-
tor, J,,, acting on the ring of polynomials as

2. )-¢,x,z,..
4, 3..0) > Oaft )= HEL BN,
It is clear that the product (now we need to order 4,,,:={a),a,, ..., a,.1})
A(AMH):: aa,,,a,,“ 'é’an_l,an """ aal,az

also satisfies the same properties and, therefore, coincides with the Lagrange operator (see [7]).
Thus, we have

_3 #(911)
ACm)p(@) ;a R(@i1s At \ 1)

One can note that divided differences are also the main ingredient in the Newton interpolation
formula, and by relating their properties to the symmetric group one can extend Newton interpo-
lation to multivariable functions (see [6] and [8]).

For our purpose, we shall use Lagrange interpolation for two independent alphabets and
functions of two variables:
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¢(ak+1a +1)
Al A(B, £
(A"“H) ( +1)¢(a1’ 1) 1;) pZ R(ak+1’ Am+1 \ak+l)R( p+l> n+1 p+1) '

We deduce, without difficulties, the following theorem.

Theorem: Let A={a,,a,,a,,...} and B={b,b,, b, ...} be two infinite alphabets. Then we have:
Z A(Am+1)A(Bn+l)Kl(ma n, ah bl) tmzn

m20,n20
(#1180 (§(@11, B,41))"
— b P P
kzézox(ak“’ p+1) R( k+1> Ak)R( p+D> p)
Z (¢(ak+1: p+1))m(§(ak+l7 p+1))n ztmzn;

X
20,20 R(@i15 Apean \ Aes) R o+l n+p+l p+l)

t*z” 2.1

ZA(A-”:H)A( D)Ko (m,n, ay, b)) 172"

mz0,n20

(@11, 5,000 (641, 5,11)) k

— b p p P p
s o) R ARy B

% z (¢(ak+1a p+1)) (g(akﬂ’ p+l)) 1M

z
w3020 R(@est> Ak \ o)) R( p+1> n+p+1\ +1)

2.2)

Z A(4,)DA(B,.)K3(m, n, ay, b)) 172"

m20,n20
k
— Z K(ak+1,bp+1) (¢(ak+1a p+l)) (4(ak+1abp+l))p lkZp
k20, p20 R(a1, AR p+1> )
% Z (¢(ak+1’ p+l))m(§(ak+1’ p+1))n tmzn;
m>0,n20 R(ak+l’ Am+k+1 \ Ak+1)R( p+1> n+p+1 p+l)

(2.3)

> A4, DA(B,. K (m,n,a,b)1""

mz0,n20
= Z K(a,c " bp+1) (¢(ak+1, p+1))k(§ (a1, p+1))1’ o

£20, p>0 R(a,,;, 4R o+ p)

(2.4)

y Z (#(@s1 p+1)) (S p+1)) M
020 R(@ts A \ AR o1 Brapin \ B,.)

We shall use the above theorem in the case of different specializations «, ¢, and ¢ for which
the divided difference is easily calculable. The simple fact that the operator A(4,,,,) decreases
the total degree in 4 by m implies the following identities.
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Lemma (2.5): If we specialize x(x, y) = 1, § — ¢,(x, y) = 754 :ZIJ; and ¢ — &y(x,y) = ’121:2?){ , We
obtain
A(4, )AB, 1)K (m, n, a,, b) = A(4,,,)A(B, ) Ky (m, n, a1, by)
= A4, )AB, ) Ks(m, n, a;, b)

(lzf;lzzbl )" ifn=0,

= (lnfxzqal Jifm=0,

0 otherwise.

Lemma (2.6): If we put x(x, y) > x,(x, ) = 75—, $ > h(x, ) = :‘:ﬁ;’;, and £ - {,(x, ») =
2t (g, + B,x), we obtain

Aytpx
A(4,)AB, K (m, n, ay, b) = A(4,,,,)A(B,) Ky (m, n, a4, by)
= A4, )AB,.)Ks(m, n, a;, by)
= A4, )A(B,)Ky(m, n, a;, by)

{ 1 (ﬂl+alal )m ifm=0,

= J Artma \ At e
0 otherwise.

12, A2 12y

Lemma (2.7): If we put x(x,y) = K3(%, ¥) = Grimn@ ) T Orra e Bm @ has o)’

B $,(x, ) = F242 (a, + f,)), and § — &, (x, ) = FH2L (o + frx), we obtain

A(4,)AB, K (m, n, a,, b) = A(4,,,,)A(B,. ) Ky (m, n, ay, by)
= M4, DAB, 1) Ks(m, 1, ay, by)
Ky(a,b) ifm=n=0,
- {O otherwise.

Lemma (2.8): If we put x(x,y) = &3(%, ) = Grmmtriy) Tty 2 (%) = l;:z; (a, +By),
and ¢ = &, (x, ¥) = 52 (@, + yx), we obtain

A(4,,)A(B,.)K (m, n, a;, by)

-1 -1
m n (A A .
_ #_:Z(al—%ll) (az—%lz) (H(;’,“"aﬁl )J (11( ~ 4D, )J if m=n,
0 otherwise.
The identities (2.1)-(2.10) and (3.16) of Krattenthaler [5] arise as different specializations of
the functions x, ¢, and ¢ considered in Lemmas (2.5)-(2.8) above, and to the case in which

A=B=/{0,1,2,...}. For each of the four cases given in our Theorem, we give the formulas when
A and B are general. We then specialize to the case where 4 and B are sequences of "g-integers."
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3. APPLICATION OF IDENTITY (2.1)

Formula (2.1) and the previous lemmas provide the following identities:
I) Inthe case where 4 and B are general alphabets, we have

-1 -1
Hi Hi Hy
1- zi§l-——1 l-———7
( A+ @Ay + by )( Ay + by ) ( AL+ gy )

_ Z (#1341 p+1))k(§1(ak+1, p+1))p
k20, p=0 R(akH’Ak)R( p+l> p)

% Z (¢l(ak+1> p+1))m(gl(ak+l> p+1))’1 tmzn’
m=0, n>0 R(ak+1a Am+k+1 \ Ak+1)R( p+1> n+p+1 p+1)

t*zP G.D

1 Z 1 (¢1(ak+17 bp+1))k (§Z(ak+1a p+1))p thp
(A + ) — (0‘1+ﬂ1"1)#zz k20, p20 M+ M R(ay,1, AR, B,) 3.2)
% (¢1(ak+1> p+1))m(é’2(ak+l) p+1)) 1M .
50 R(@ 115 Ay \ ARG, b+l n+p+1\ +1) ’
_ ($2(@p1y, b +1))k(§2(ak+1, D) k
Kz(al,bl) = . pZOKz(akﬂ,bpﬂ) R(ak:;,Ak)R( p+1> p; t"z (3 3)
% (¢2(ak+1: p+1))m(;2(ak+1’ p+1)) (M |
m20,nz0 (ak+1: m+k+l\Ak+l)R( p+l> n+p+ p+1) ’
1 Iy %) q( A (! A g 3
e (G B2 811 R (1 )
_ 1 (¢2(ak+l’bp+1))k(§2(ak+lﬂbp+l))p _Ne(=z)P 34
2 0f2" (34

k20, p20 (A4 + a4, + ﬂszﬂ) R(a,,, Ak)R(bp+1> Bp)

x ¥ (82(@41, 5410) " ($2(A1s1, Bpir) ()" (~2)"
20,120 R s> st \ Aec) Ryt By pii \ Bpit)

) Let [n]—ﬂ—, [}l =[n][n—1]---[1], exp,(x)= Z;T:O[’;—']'!. Then in the case A ={0,[1],
[21,...}, B={0,[1],[2],...}, we obtain g-analogs for Krattenthaler's identities (2.1), (2.4), (2.8),
and (3.6) in [5]. For example, from (3.1), we obtain the following g-analog of (2.1) in [5].

-1 -1
¢\([k1. [P])" (C,([K].[PD)”
()= [1-52] - g BT SR

(3.5)
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4. APPLICATION OF IDENTITY (2.2)

I) Inthe case where A and B are general alphabets, we have

-1 -1
H Hy H H
1- z||l-———t¢ -
( A+ ey Ay + pby Z]( Ay + by ) ( A+ Z}

_ Z (#1(as1, p+1))k(§1(ak+1, p+l))p fk P

“.1)
k20, p20 R(ay1, 4)R(G p+l> p)
y Z (13015 p+l)) (& 1(@, p+l)) o
m20, n20 R(ak+l: A-m+k+1 \ Ak+1)R( p+l> n+p+1 +1)

1 _ 1 (¢1(ak+1= p+1))k(é’2(ak+l7 p+1))p tkzp
A+ @) —(a + Bia) oz 50 p20 41+ B R(ay,1, A4)R(b,1, By) 2)

y z ($1(a41, p+1))m(§2(ak+1: p+l)) ",

m20,n20 R(ak+1’ Am+k+1\Ak+l)R( p+l> n+p+l\ +1)

e S vy e i y
y (#2(a41 p+1))m(§2(ak+1: p+1))n M7 @3

m=0, n2 R(ak+1’ Am+k+l \ Ak+1)R( p+l> n+p+1 p+1)

I) For example, in the case 4 ={0,[1],[2],...}, B={0,[1],[2],...} we obtain from (4.2) the
following g-analog of (2.5) in [5].

1 L (4% [pD), (GURLLPD), 4,
A=z obmso b+ mlk] g EVEN gPe 2 p

x Z &\ (¢1([k] [P]) k), (&, ([%1,[P]) - P). "

m20, n20 [m] ! np[n] !

“4.4)

5. APPLICATION OF IDENTITY (2.3)

I) Inthe case where 4 and B are general alphabets, we have

-1 -1
[1_ bt zz)(l_Lt} [1__—”2 )
Ayt may Ay + by Ay + 1oby A+ ey
_ (#1(aps, p+1))k(§1(ak+1, p+1))p k.p
= 2 t*z (5.1)
k20, p20 R(ays1, AR, B,)

y ($1(@s, p+1))m(§ 1@ p+l))n £
m20, n20 R(ak+l’ A‘m+k+l \ Ak+1)R( p+l> rl+p+l p+l) ’
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1 Z 1 (¢ (ak+l’ p+l))k(é’2(ak+l’ p+l))p tk p
(A + ) - (al+ﬂlal)ru2z k20, p20 A1 T His R(ay,;, 4)R(b,,, B,) (5.2)
» (#1(ar 1, p+1))m(§ 241, p+1)) [ .
m20, n2 0 R(@ 41, Apiirr \ A R(D o+ n+p+1\ +1) ’
k
Kz(al, bl) — z Kz(ak.H, bp+1) (¢2(ak+l’ p+1)) ((Z(ak+17 p+1))p tk P
k20, p20 R(ay,,, A )R, B,) (5.3)

($2(@pss p+1))m(§2(ak+l’ p+l)) {Man
R(ak+1a m+k+1\Ak+1)R( p+l> n+p+l\ +1)

II) For example, in the case 4 ={0,[1],[2],...}, B={0,[1],[2],...} we obtain from (5.3) the
following g-analog of (2.10) in [5].

1= Y kL)Y

261 ()" (GURLLPD), )

k20, p20 g“ IR g ]!

(5.4
k ) k n "l
y equ(_ #:((k1. L)) ,)Z( y &l ],, [2)-p)
q n20 [ ]
6. APPLICATION OF IDENTITY (2.4)
I) Inthe case where 4 and B are general alphabets, we have
1 _ 1 (#1(@a, p+1))k(§2(ak+l; bp+1))p 1k P

(A + @) — (@ + Bz st pr0 At BB R(ay1, AR, B,) 6.1)

(#1(@n, p+l)) (&2(a, p+1))n m_n

1z".

m20, n>0 R(ak+l’ m+k+1 \ Ak+1)R( p+D> n+p+l \B +1)

II) For example, in the case A ={0,[1],[2],...}, B={0,[1],[2],...} we obtain from (6.1) the
following g-analog of (2.7) in [5].

R S 1 ((ALIPD) (GRLLPD)
M=z simso M+ mlk] g ¢k PP [p]!

(_ gz(["q];[l’])) 2)2( yr GTELIPD = p)y m

m20 q"[n]!

(6.2)

X exp,
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FIBONACCI ENTRY POINTS AND PERIODS FOR PRIMES
100,003 THROUGH 415,993

A Monograph
by Daniel C. Fielder and Paul S. Bruckman
Members, The Fibonacci Association

In 1965, Brother Alfred Brousseau, under the auspices of The Fibonacci Association, compiled a two-
volume set of Fibonacci entry points and related data for the primes 2 through 99,907. This set is currently
available from The Fibonacci Association as advertised on the back cover of The Fibonacci Quarterly. Thirty
years later, this new monograph complements, extends, and triples the volume of Brother Alfred's work
with 118 table pages of Fibonacci entry-points for the primes 100,003 through 415,993.

In addition to the tables, the monograph includes 14 pages of theory and facts on entry points and their
periods and a complete listing with explanations of the Mathematica programs use to generate the tables. As
a bonus for people who must calculate Fibonacci and Lucas numbers of all sizes, instructions are available
for "stand-alone"” application of a fast and powerful Fibonacci number program which outclasses the stock
Fibonacci programs found in Mathematica. The Fibonacci portion of this program appears through the kind-
ness of its originator, Dr. Roman Maeder, of ETH, Ziirich, Switzerland.

The price of the book is $20.00; it can be purchased from the Subscription Manager of The Fibonacci
Quarterly whose address appears on the inside front cover of the journal.
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