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1. INTRODUCTION

The Fibonacci polynomials #, = u,(x) and the Lucas polynomials v, =v,(x) are defined by
the second-order linear recurrence relations

U, =xu,_+u, , (Uy=0,u=1),
and n n—1 2 ( 0 1 ) (11)
vn = xvn—l +vn—2 (VO = 2’ W= JC),
where x is an indeterminate. Their k™-order derivative sequences are defined as
k k
ky _ . (k — d N kY _ (k _ d
ul = ul(x) = —F Un(x) and W =vi(x) = o
Denote f, =u, (1), £, =v,(1), £® = u®(1), ¢® =v®(1). P. Filipponi and A. F. Horadam
([1], [2]) considered £*? and £ for k = 1,2 and obtained a series of results. By the end of [2],
seven conjectures were presented for arbitrary £. In this paper we shall consider the more general
cases, #*) and v®), for arbitrary k. Our results will be generalizations of the results in [1] and [2].
As special cases of our results, the seven conjectures in [2] will be proved.
Following the symbols in [1] and [2], denote A =vx*+4, a=(x+A)/2, f=(x—-A)/2, so
that a+ f=x,af =-1,a—- F=A. Itis well known that

u, =@ -B") A, v,=a"+p" (1.2)

(x).

2. EXPRESSIONS FOR 4% AND v{¥) IN TERMS OF
FIBONACCI AND LUCAS POLYNOMIALS

Theorem 2.1:
k!
u'(’k) = m(an,kun +bn,kvn)’ (2 1)
where
k . k .
ae= 2 (Fe M8 )+ 3 (FR )8 ), @2)
21;(1,- 2'&2:'
and
k . k )
k—i+ i k—i+ -1
b= Y (Fe A )+ X (K e ), @)
2o e

where ¢, ; and d, ; (i=0,1,..., k) satisfy the systems of linear equations
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G, (k+1)ﬁck, e (k+l)ﬂ,ck0 - 1),(k+1) (2.4)

k+1 k+1) | k+1) .
dk,i+( ) )adk,x'—1+"‘+( ; )a’dk,o=( . ]A" (2.5)

Furthermore, for i =0, 1, ..., k, there exist polynomials p, ; and g, ; in x, with integer coefficients,
which satisfy

and

Cpi = Dri@+q,;, and d,,=p, .B+q,, (2.6)

Proof: Let the generating functions of {u,} and {u®} be U(®)=U(t, x) = T2, u,t
U, () =U,(t, x) = T2, ult", respectively. It is well known that U(#) = ¢/ (1- xt — %), hence,

" and

n=0 “n
U, (0 =§k—(’](t) = k1Y A= xt -2, 2.7)
By partial fractions we have
k k
Y A=xt =Y =30,/ A-at) T+ Y R (1= B, (2.8)
i=0 i=0

where O, ; and R, ; are independent of 7. Multiplying by a**'(1- B)**!, we obtain

(@) 1 (1=a)™ = @+ 'Y Oy /(=)™ + (), @2)

i=0
where the function @(f) is analytic at the point # = &' under the condition that ¢ is considered as

a complex variable (while x is a real constant). Since(ar)**'/(1—af)**! =[(1- at)™' - 1]**! and
(@+0)F =[A+ (- at)[F*, we can rewrite (2.9) as

kz-'—:l( 1) (k + 1)(1 at)—(k+1—1) Z(k + 1) Ak+1—xﬂx (1 at) Z Qk 1(1 sz‘)—(k+1—-1) + ¢(t)

i=0 i=0
Because of the uniqueness of the Laurent series [4] at the point 7 =¢a " for the function
(o)1 / (1- at)**!, we can compare the coefficients of (1-at)" ¥ (i=0,1,..., k) of the two
sides in the last equality to get

S (I + 1) prsi- k+1

> (FHarigig,, = (4 2.10)

Jj=0
Let 0., =N (=01, k) 2.11)
and substitute it into (2.10); then we get (2.4). For the same reason, it follows that

z("“)( aFar, = () @12)

Let AV (k+1+) :

Rk,f_( A) dk,i (1—0’ lauk) (213)

and substitute it into (2.12); then we get (2.5).
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Now we shall prove (2.6). From (2.4) and (2.5), ¢, o = d, o = 1; hence, the conclusion holds
for i =0. Suppose the conclusion holds for 0,1,...,i—1. Then, from (2.4) and (2.5), we have

k+1 k+1
( 1)( ) Zl( ] )ﬂj(pkl—ja+qk1 j) (214)
j=
and
k+1) k+1) ;
dp;= ( ;- )A Zl( ; )a](pk,i—jﬂ+qk,i—j')' (2.15)
=
From (1.2), it is easy to show that #’ = —u;a +u,,,; hence,

. . ,
i (pk,i—ja + qk,i—j) = —pk,i—jﬂj + qk,i—-jﬂj
= (pk,i—juj—l — 4, i—j j)a +(qk i-j _]+1 = Pr,i- J _])
For the same reason, we have
a’ (pk,i—jﬂ+ qk,i—j) = (pk,i—juj—l - qk,i—juj)ﬂ+ (qk,i—juj+1 - pk,i—juj)-

We can see that A’ is a polynomial in x with integer coefficients for 2|i, but A' = A™(x—2/) and

(=AY = A™'(x—2a) for 2/i. By substituting the above results into (2.14) and (2.15), and by the
inductive hypothesis, the conclusion is proved.
Now substituting (2.11), (2.13), and (2.6) into (2.8), then into (2.7), we get

U,(t)=— I:ZC,“A" - at)k+1"+2d (AT - ﬂt)k”']

A2 k

AZk[Z(ck,/(l at) " /(1= A

2|k—i
+ 2 (¢, /(- ot +d, /(1 — fr)F A
20k—i
Expanding the right side of the last expression into power series in # and using (2.6), we obtain
k! k—i+n) i k—i+n) -1~
) = _A?k‘l:z%’( k—i )Ak (Dr i1 +qk,iun)+2y;_i( k—i )Ak : (Dr, Vs +qk,ivn):|' (2.16)
It is easy to prove that u_,, = (xu, +v,)/2, v,,, = (A%, +xv,)/ 2; hence,

Pre ithnsr + G, ithn = (P % + 2G5 0, + Py iV,) 1 2

2.17
= ((ck,i +dk,i)un +(, — dk,i)A—lvn) /2, ( )

pk,ivn+1 +qk,ivn = (pk,iAzun + (pk,ix + 2qk,i)vn) /2

2.18
=((¢,; —d, )Au, +(c,, +d, Jv,) /2. @19

Substitute (2.17) and (2.18) into (2.16) and we are done. O
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As an example, when k£ =3 and 4, Theorem 2.1 gives the following results:

Cyo=dyy =1, ¢ =—4A-4p, d;; =4A -4a,

¢, = 6A2 +168A +105°, dy, = 64 —16aA +10a?,

Cy3 = —4N = 24N —40B°A-208°,  dyy = 4N — 240 +400>A - 20a°,
Cyo+ 3 =2, ¢y +dyy = —4x,

Cyy +dyy = 6x7 +4, Cyy + gy = —4X° +4x,

C30—dy =0, 31— dy = —4A,

Cyy — dyy = 6XA, Cy3— gy = (—4x7 +4)A,

Ay = (25”)&(—%%(03”)(—43:3 +4x)+(3§n)A3-O+(1Jin)A-6xA

= -2(n* + 1)x* — 402n* - 3)x,
2+n O+mn\ -1 3 3+n) 2 1+n 2
b= 5 A(—4A) + 0 A (—4x” +HA + 3 A2+ 1 (6x" +4)
=%n(n2+ll)x2+%n(n2—4),

u® =[—(6(n* +1)x* +12(20% = 3)x)u, + (n(r* +11)x* + 4n(n* — ), 1/ A,

in particular,

1996]

FO =@ -1, -6f,)/25.

Cao =dgo =1, Cy = —SA-5p, dy,; =5A-5a,
iy = 1042 +258A +155%, dy, = 10A® —25aA +1507,
¢43 = —108° — 508K —T55°A - 3547, dz = 10N - 500/ +75*A —35a°,

Caq = SA* + 5088 + 15087 +1758°A +705%,
d,, = 5A* = 500N’ +15002 A 1750 A+ 70a,

Cao +dag =2, Cyy +dyy = —5X,

€y +dy =10x2 +10, €43 +dyy =—10x> —5x,
Cyq +dyy = Sx* — 152, Cyo—dsg =0,

Cy —dyy =54, Cyy —dy, = 10xA,
Cpy—dy3 = (-10x* +5)A, Caq — gy = (53> —15%)A,

n

Ay = (42;")& 2 +(2;n)A2(10x2 +10)+(Ogn)(5x4 ~15%%)
+ (3 ;n) A (-5A) +(1‘;n) A(-10x* +5)A

- 1_12.(;14 +357% +24)x* +§(2n4 +25n% = 72)x? +%(ﬂ4 —107* +9),

(2.19)

(2.20)
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b

n

Y= (4 j”)& -0+(2 ;")A(loxA) +(Og") A1(5%° ~ 150)A
+ (3 ;”) A (=5x) + (l ﬁ")(-10x3 —5x)
_ S 2 3 S o0
= 6n(n +5)x 3n(2n 11)x,

u® = [((n* +357% +24)x* +42n* +250* — 72)x* +16(n* — 100 +9))u,

2.21
— (10n(n* + 5)x* +20n(2n* -1 D)x)v, ]/ A, 221)

in particular,
£@ =[(5n* = 5n* = 24) f, - 2n(5n* = 17)£,]/125. (2.22)

We observe that (2.6) can be verified by using the above results.

From v =nu{*P (see 1" of Theorem 3.1 in the next section) and Theorem 2.1, we can
obtain the expression for v¢*) in terms of u, and v, .

3. SOME IDENTITIES INVOLVING () AND v

If we differentiate certain identities involving u, and v,, we can get the corresponding iden-
tities involving #*) and v(*).

Theorem 3.1:
1. v =D, (3.1
2°. u,(,k) = xuf,’f)l +uf,’ﬁ)2 + ku,(,':l), vf,k) = xvf,’ﬁ)l + vf,’f)z + kvf,’:l); (3.2)
o k k k
3 v =l +ul, (3.3)
Au® + 20kl + k(- DuD =v®) 4B (3.4
k
o k k k—i i —-i i
&, = 34 ) s i), 63
i=0
k SR, N () (=),
(i _
0= X (4 M0 002, 69
i=0
*) E (B =i @) (=), D)
Uy 'y = (_ l)nZ(l )(um ' un’+1 - um+ll unl )> (37)
i=0
G (1) iy ) (i) 0)
n bt § 1 bt | 1 .
vm—)n = (_l) Z(, )(vm+l U,” —Uy Vpin)s (38)
i=0
in particular,
) = (1" ' (.9)
v = ()M , (3.10)
® _ (kY w00
D),
n :Z(j)un vnl’ ' (311)
i=0
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Elrp g o
Vi =22( ; )vﬁ"")vf,’); (3.12)
i=0
k S0 -
ul, = Z( )u,(,ﬂ’)v,(j), (3.13)
i=0
k
wh = Z(];)vf,ﬁ]’)vf,’) (=1)"8),; (0 is the Kronecker function); (3.14)
i=0
' k(k oo
. il + i, = 2§ usk g, G.15)
i=0
k (K N
u® —(-1u®, :Z(i)vfnk")uf,’); (3.16)
i=0
NG) *) (K -0y 0.
m+n+( l) V zg 1 vm vn > (317)
S(k
Vit = V2, —Z(,-)uﬁn"">(v<’> V), (3.18)
i=0
6. v =(m—k+F D —20E) + D). (3.19)

Proof: 1°. This can be obtained by differentiating the identity v{” =nu_, which had been
proved in [1].

2°. By differentiating (1.1).

3° ~ 5°. By differentiating the following identities, which can be seen in [5] or can be derived
from (1.2):

Vo = Uy + un—l’ A U, =Vun +vn—1’
ll um+1u +y n 1> V vm+1u +v, n—l?
u - (—D ( n+l m+lun)’ ‘V _( l) (um+1v —Y vn+1)a
u, +( D'u,_,=u,v,, Uy, —(—D'u,
2
Vn +( l) rm _van’ Vi _( l) mn"‘Auun_u (n+1 vn—1)7
u_ "( D" u, V_n‘( D,
Uy, =uV,, vy, =V —2(=1)",
u2n+l S Uy )V — (_ l)na Vanil = VpetVn — (_ 1)nx~
6°. From the well-known identity v, = xu, +2u,_,, we get xnu, =nv, —2((n—Du,_,; +u,_,),

that is, xv® =nv, —2(v®, +u,_)), and the proof is finished by differentiating the last expres
sion. O

Let x=1in1°,2°, 3, and 6" of Theorem 3.1; then Conjectures 1-5 in [2] and [3] are proved.

4. SOME CONGRUENCE RELATIONS AND MODULAR PERIODICITIES
First, we introduce some concepts and lemmas. Set polynomials

glt)y= t* —altk'1 —e—a_l—a, “.1
and
g =1-at——a_t" " -ar* (4.2)
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Obviously, g(t)=1*g(1/¢) and g(z)=1*g(1/1). The set of homogeneous linear recurrence
sequences {g,} of order & [each of which has g(¢) as its characteristic polynomial] defined by

Enve = Nk T T X1 & T A8 (43)
is denoted by Q(g(?))=Q(qay,...,a,). The sequence {w,} €Q(g(?)) is called the principal
sequence in Q(g(?)) if it has the initial values wy =w, =---=w,_, =0, w,_, = 1.

Lemma 4.1: Let {w,} be the principal sequence in Q(g(¥)); then its generating function is
W) =115 4.4
(see [6], p. 137).

In the following discussions, we suppose that a, ..., a, are all integers. Let {g,} be an inte-
ger sequence in 2(g(?)) and m be an integer greater than one. Denote the period of {g,} modulo
m by P(m, g,). If there exists a positive integer A such that

t* =1 (modm, g(1)), (4.5)
then the least positive integer A such that (4.5) holds is called the period of g(#) modulo m and
is denoted by P(m, g(¢)).

We point out that

P(m, g(1)) = P(m, g(1)) for ged(m, a,) =1. (4.6)
To show (4.6), it is sufficient to show that g(?)|(t* —1) (mod m) iff (®)|(t* —1) (mod m).
Assume that g(¢)|(#* —1) (mod m). Then we have t* —1=h()g(t)+m-r(t), where h(f) and
r(¢) e Z(?) (the set of polynomials with integer coefficients). Replacing ¢ with 1/7, we obtain
1/ H* =1=h(1/ (/) +m-r(1/1). Multiplying by t*, we then have —(¢* — 1) = t* *h(1/ t)g(£)+
m-t*r(1/1). Since gcd(m, a,) = 1, the degree of g(¢) (mod m) is k. This leads to #*~*A(1/¢) and
t*r(1/1) € Z(t). Hence, g(t)|(t* —1) (mod m). The converse can be proved in the same way.

Let B(t)=1/g(t)= X ,bt". Let {w,} be the principal sequence in 2(g(r)). Then, from
(4.4), we have w, =b,_,.,; and therefore, P(m,w,)= P(m,b,). Corollary 2 in [7] means that
P(m,b,)= P(m,g(t)).” Therefore,

P(m, w,) = P(m, &(1)). (4.7)

From (4.6) and (4.7), we obtain

Lemma 4.2: Let {w,} be the principal sequence in Q(g(?))=Ua,, ..., a;), ged(m,a,) =1. Then
P(m, w,) = P(m, g(1)). (4.8)

Using the footnote and (4.6), Theorems 17, 21, and 15 in [7] can be rewritten as Lemmas
4.3, 4.4, and 4.5, respectively.

* In [7] the period of {b,} modulo m is referred to as the period of its generating function B(f) =1/ g(¢) modulo m.
Hence, the concept "the period of 1/ g(¢) modulo m" stated in [7] should be translated into " P(m, g(¢))" in this

paper.
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Lemma 4.3: Let ¢(t) be a monic polynomial with integer coefficients, p be a prime, p|@(0), and
o(t) be irreducible modulo p; then, for p™ <s<p” (r=1),

P(p", 0()°) = p™" ' P(p, p(1)). (4.9)

Lemma 4.4: Let ¢(f) be a monic polynomial with integer coefficients, p be an odd prime,
pl9(0), and @(f) be irreducible modulo p. Assume A,(¢) =1;_, ¥,(¢), where ¥,(¥) = p(¢)* (mod
p) (i=1,..., 7). For fixed s,7 > 1, if there exists an integer 7> 1 such that

(T-Ds<p'<Ts<(T+)s<p, (4.10)
then, for every 7 satisfying p™™' < =5 < p’, it follows that
P(p", k(1) = P(p", o) = p""" - P(p, 9(1)). (4.11)
Lemma 4.5: Let ¢(f) be a monic polynomial with integer coefficients, p be an odd prime,
ple(0). If P(p, p(t)) = P(p?, o(®)) == P(P', (1)) = P(p*, (f)), then m > i leads to
P(p", () = p"" - P(P', p(0)). (4.12)

Lemma 4.6: Let p be an odd prime, for j=1,2, ¢ ,(¢) be a monic polynomial with integer coeffi-
cients, pf¢,(0), and ¢;(?) be irreducible modulo p. Assume h,(¢) = [17; ¥(z), where ‘¥,(¢) =
0,0’ p,(2)° (mod p) (i=1,...,7), ged(@,(t), 9,(1)) =1 (mod p). For fixed s,7 > 1, if there exists
an integer 7> 1 such that (4.10) holds, then for every 7 satisfying p"™! <z < p” it follows that

P(p", h(0) = P(P", ()7 0,()7) = P lem{P(p, 9, (), P(p, 0,(1)}.  (4.13)

Proof: Denote P(p, (1)) =2, (j=1,2), lem{d;, A,} = 4. Since h(f) = ¢,(1)"p,(1)* (mod
p), ged(p1(t), p2(1)) =1 (mod p), we have P(p, k(1)) =lem{P(p, 0,(1)"), P(p, (D7)} By
Lemma 4.3, P(p, p,;(1)*) = p’A;; hence, P(p, h.(t)) = p'A.

Because 7 is the least 7 satisfying p"! <5< p” from (4.10), we get hy(f)|h,(¢); therefore,
P(p™ hp(1))| P(p™,h(1)). By Lemma 4.5, P(p", h.(1))|p"™" P(p, h(1)) = p™*"~'A. By the same
lemma, if we can show P(p?, k(1)) # P(p, hy(?)) = p'A, then P(p™, hy(¥)) = p™"'A and (4.13)
holds.

Now we can rewrite ¥,(¥) = ¢,(t)*p,()* — pb,(t), i =1, ..., T. Hence,

T
h(t) = 910 02" = P70 - 5 (€)' TD - {(#) (mod p?), where () = Z,O 0:(7).

Then i (1)[1(1)°@2(1)’ + PCO1= 918" po(1)™ (mod p?). Therefore,

el W Ly pa”* -1
@) o)) @) Ty (1)

From (4.10) and Lemma 4.3, we know that P(p, ¢ (t)""**) = p"- P(p, ¢ ()) = p'A;; thus,
@ (DT |(t7* —1) (mod p). From ged(, (1), ¢,(1)) =1 (mod p), it follows that

@1 o (T |(t7* - 1) (mod p),

(mod p?). (4.14)

and so
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PO o (7 | p(t7 = 1) (mod p?).
Assume that P(p? hy(t)) = p'A, then Ay(1)|(t7* —1) (mod p?). From equation (4.14), we get
@, T|(#t7* 1) (mod p?); this leads to P(p?, ¢,(t)")|p"A. But from Lemma 4.3 we have
P(P?, ¢,;(t)") = p"*'4,. This leads to the contradiction that p"'A[p"A. O

In the following discussions of this section when the divisibilities of #{*) and v{*) are con-
sidered, we assume x takes integer values only.

Theorem 4.1:
uP) =v® =0 (mod k!). (4.15)

Proof: Denote
F.(f) = (£ —xt - 1)**1, (4.16)

Let {w,} be the principal sequence in Q(F,(r)). From Lemma 4.1, the generating function of

{w,} is
W(t) = t**1 (1 - xt —})F+1, (4.17)

Comparing (2.7) to (4.17), we get
u® =klw, .. (4.18)
Because {w,} is an integer sequence, we have #%) =0 (mod k!), and from (3.3) we get v{¥) =0

(mod k!). O

Theorem 4.2:
v®) =0 (modn) (k>1). (4.19)
This follows from (3.1).
The results of the last two theorems are generalizations of the results of Conjectures 6-7 in

[2].

Theorem 4.3: Let p be an odd prime, p > k.
1°. If pfA?, then

P(p",u?) = P(p",v{P) = p"- P(p,u,) = p" - P(p,v,). (4.20)
2°. If p|A’andp™ ' <2k+2<p” (r=1o0r2), then
P(p", u) =4pmr-1, 4.21)
3. If p|Aandp™' <2k <p” (r=10r2), then
P(pm,v{P) = apmrt. (4.22)

Proof: Denote f(t)=1*—xt—1. From Lemma 4.2, (4.18), and (4.16), for p> k, we have
P(p,u,) = P(p, f(1)) and P(p", u{)) = P(p™, F(1)).

1°. Let p|A?. From v, =u,,, +u,_, and Nu, =v,,; +v,_,, it follows that P(p, u,) = P(p,v,)
=A.
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When f(¢) is irreducible modulo p, the conclusion P(p”,u{?)=p”4 can be proved by
letting @(¢) = f(¢),s=k+1,r=1 in Lemma 43. When f(¢)=(t—a)(t—-b),a#b (mod p), the
same conclusion can be proved by letting ¢,(f) =t—a, ¢,({)=t—b,s=r=1,7r=k+1 in Lemma
4.6.

We now prove P(p™, v®) = p”1. From (3.3), we can see that P(p”, v?)|P(p™, u®). On
the other hand, from u, = (v,,; +v,_;) / A%, by differentiating, we can obtain

k
u =% (’i‘)(vf,ﬁp +VED) M, (x) | A2, (4.23)

i=0

where M,(x) is a polynomial in x with integer coefficients that are independent of n. We see that
(3.2) implies P(p™,v¢™)|P(p",v?"). Hence, for i=0,1,....k, P(p",v¢ )| P(p",v¥). From
(4.23), it follows that P(p™, u)|P(p™,v). Thus, P(p”,v¥*¥) = P(p",u)) = p"A.

2°. Let p|A%, then f(¢)=(t—x/2)* (mod p). From x* =—4, we get (x/2)* =-1 (mod p).
Hence, P(p,t—x/2)=ord,(x/2)= 4.* In Lemma 4.4, if we take @(f)=1—x/2, h(t) = F, () =
@()**? (mod p), s=2,r =1or 2,7 =k +1, then we get the required result.

3°. Using the result of 2°, it follows that P(p” v{®) = P(p™,nulD)|lem{P(p™, n), P(p™,
ulk D)y =4p™r1 when pt <2k <p” (r=1o0r2). Since v,=a"+p"=2(x/2)" (mod p), then
4= P(p,v,)|P(p",v¥), and we have P(p™,v¥)=4pM. We want to show that M =m+r—1=
m+1forr=2, or =mforr=1. First, let »=2. If it would not be the case, that is, if M <m,
then if we replace #» by n+4p™ in (3.19) we have

o) =+ 4p” = k+ DD — 28 +ul 0, ] (mod p).

Subtracting this from xv® = -k +)vED —2[v®), +4*D] (mod p™), we get ufzi 42”, -
u*7D =2p™ ¥ =0 (mod p”). This means that P(p™,u*D)|4p™ for r=2. But, by 2°, we
should have P(p™, ulf=0) = 4p™! forr =2. A contradiction!

Next, let 7 =1. The least k satisfying 1< 2k < p is 1. Recalling that P(p”, vV)| P(p™, v{P),
we need only prove that M =m for k =1. On the contrary, suppose M <m—1. then

Vidgrt ~VSD = (4P Yy — s, = 0 (mod p).

Expanding u, in (1.2) into the polynomial in x, A, and noting p|A?, we obtain

i=0

nu, = n(nil)/zl (21,’: 1)(x/ 2y 2 (A/2)Y = nZ( )(x/ 2)" %Y A/2)% (mod p™) (4.24)

and

m—1 m—1 n+4pm—l
(n+A4p" Y, 4 = (+4p )Z( 2it1

When m > 1, since

)(x/z)"“ﬂ""—z"-l(A/z)?f (mod p™).  (4.25)

* Let m and a be integers greater than one, gcd(m, a) = 1. The least positive integer A satisfying a* =1 (mod m) is
called the order of @ modulo m and is denoted by ord, (a). Since t* -1=[(t—a)+a]*-1=a* -1 (mod (¢ —a)), we
have P(m,t—-a)=ord (a).
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m—1 "+4pm_l = n m-1 2i i
(n+4p )( 2i+1 )"n(2i+l) (mod p™™") and pl|A“ fori>1,

and furthermore, (x/2)* = 1 (mod p) implies (x/2)*”"" =1 (mod p™), (4.25) can be reduced to

m=1
(n+4p" Y,y = (1 +4P" )P (x 1 2)" +ny. (2;:_ 1) (x/2)" 51 (A/2)% (mod p™). (4.26)
i1

Subtract (4.24) from (4.26) to get

Ci+4p™ N, —nu, =8np™(x/2)"! # 0 (mod p™) forp|n.

+4pm-1

This is a contradiction!
When m =1, from (4.24) and (4.25), we obtain

(n+Bu,,q —nu, =8n+2)(x/2)"! 0 (mod p)

for n# -2 (mod p). This is also a contradiction! O

From Theorem 4.3, we can obtain many specific congruences. For this, we introduce another
concept. Let {g,} be an integer sequence. If there exists a positive integer s, a nonnegative inte-
ger n,, and an integer ¢, gcd(m, ¢) = 1, such that

8nes =C8, (modm) iff n>mny, (4.27)

then the least positive integer s satisfying (4.27) is called the constrained period of {g,} modulo
m and is denoted by s = P’(m, g,). The number c is called the multiplier.

Lemma 4.7: Let {w,} be the principal sequence in Q(F, (7)), where F,(¢) is denoted by (4.16).
Then P’'(m,w,)=s exists and the multiplier ¢ is equal to w,,,,,; (mod m). Furthermore, if
r=ord,(c), then P(m,w,) = sr, and the structure of {w, (modm)} in a period is as follows:

0, ..,0 1, Wy, Wok+3 s Welt,

0, ....,0,¢c, Wyiy, Wyis, v, CW, (4.28)
r-1 r-1 r—1 r-1

0, ...,0, ¢, ¢ Wy, € Wypia, ooy € Wy

Proof: Because {w,} is periodic, it must be constrained periodic [in the most special case,
the multiplier ¢ may be equal to 1 (mod m)]. We have w, =---=w,, =0 and w,,,, =1. Replac-
ing n by 2k +1 in the expression

w,,,=cw, (modm), (4.29)
we obtain ¢c=w,,,,,, (modm). By induction, from (4.29), we can get
Wy s ='W, (modm). (4.30)

If j=r=ord,(c), then (4.30) becomes w, ., =w, (modm). This means that P(m,w,)=sr. In
(4.30),letjbe O0,1,...,r—1andnbe O,1,..., s—1; then (4.28) follows. O

From Lemma 4.7, (4.18), and (3.1), we obtain
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Theorem 4.4: Let {w,} be the principal sequence in Q(F,(¢)), where F,(f) is denoted by (4.16),
and let p be an odd prime, p>k, P'(p",w,)=s. Ifw,=0 (mod p™) for n=i (mod s), then
u® =0 (mod p™) forn=i—k (mod s)
and
v =0 (mod p™) for n=i—k (mods) orn=0 (mod p™).

Furthermore, if Ap” =i -k (mod s), then v("“) =0 (mod p™).
Example 1: Let x=1,p=3. Then A’ =5, p|A’. Hence, from (4.20), we obtain P(3", f¥))=
P@3" 48)=3".P3, f,)=8-3"fork=1,2.

Example 2: Let x=1,p=5. Then p|A>=5. Hence, from (4.21), we get P(5", f¥)=4.5""
for k=2,3,4, or4-5" fork =1 and, from (4.22), we get P(5",/®)=4.5"" for k=3,4 or
4.5" fork=172.

Example 3: We show that £® =0 (mod 10) iff n=0,+1, +2 (mod 25), and £ =0 (mod 30)
iff n=+1, £2 (mod 25) or n= 0 (mod 5).

Proof of Example 3: We have Fy(t)=(*—t-1P>=1*-3+57-3t-1=1°-3-3¢-1
(mod 5) for x=1. Let {w,} be the principal sequence in Q(F,(?)). Then w, c=3w,, s+3w, +W,
(mod 5).

Calculate {w, (mod5)}; according to the last congruence:

0,0,0,0,0,1,-2,-1,2,1,1,-2,-1,2,1,2,1,-2,- 1,2, 2,- 1,2,1,-2,0,0,0,0,0,— 2, .. (mod 5) .

This implies that s = P'(5,w,) =25 and w, =0(mod 5) iff n=0,1,2,3,4 (mod 25). Hence, the
example is proved by Theorem 4.1 and Theorem 4.4.

5. EVALUATION OF SOME SERIES INVOLVING #> AND v{¥)

Lemma 5.1

T. iu,.z(u,,+l+un—l)/x (x#0). (EN))
i=0

2. 30 = Wy ¥y~ 2) /x+1 (x £0). (5.2)
i=0

3 37 = Py, where ) is {1} or ). 53)
i=0

£ 3V} e = V" where (1) i (1) or () (5.4)
=0

5% i (7) Uy, = (X2 +4)"u,,, for 2|n, or (x* +4)" "%y . for 2|n. (5.5)
i=0

6. En:(n)vz,ﬂ =(x* +4)"%y,,, for 2|n, or (x* +r)™D?y . for 2|n. (5.6)
=0
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Proof: We prove only 2° and 5°. The rest can be proved in the same way.
2. iv, = i(a’ +B)=>1-a")/(1-a)+(1-8"/(1-B)
R =(1-a™-p-a"+1-™—a—-B")/(~x) = (V. +v,~2) / x +1.
5°. We have
Z(’,’) o =(1+a%) = (-af+a’) = Na".

i=0
For the same reason

$ (1) - oy

i=0

Hence, ‘
Z(?)u2i+r — Z( .)(aZHr _ﬂ2i+r)/ A= An[an+r _ (_l)nﬂn+r)/A
i=0 i=0
=A[a™" - ™)/ A= (x*+4)"u,,, for2|n,
or =N a™ + ™) = (x*+4)" D2y for2)n. O
Theorem 5.1:
n k
YU =Y IR, [+t -5, 1/ (x0); (5.7)
n k
v =3 R D =26, 1/ % (x £ 0); (5.8)
i=0 =
3 Ihl(kr) 1 ( ) (ltz:::)r’
go( ) * Z( y * (5.9)
where {5} is {u®} or P} (i =0,..., k);
n —1y n) (:f)r_ -1 ( ) n xn——th’gk;l),
> (72 >Z () ¥ 610
where {#’} is {4} or {vf,'>} (i=0,.., k)
S w _w(k =iy d ni2
Z( )u21+r :Z(l) Upyr (x +4) for 2|n,
=0 " (5.11)
or = ;)(I:)v,ff;’) —(x? +4)" D2 for 2/m;
n k
K\ - d' n
g(’i’)vg;), =§(1)v,§’;,> —(x? +4)"? for 2|n,
" ’; (5.12)
k), (k=i n
or = ;(i)uﬁﬁr ) r (x +r)™D2 for 2fn.
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Proof: Every one of (5.7), (5.8), (5.10)-(5.12) can be proved straightforwardly by differ-
entiating the corresponding one of (5.1), (5.2), (5.4)-(5.6). The proof of (5.9) is as follows.

Let k
ny_i
gn,k,r :gn,k,r(x):Z(i)x (4,—Cr) (513)
i=0
Then
k
&nkr = Z( ) (k“) Z( ) (k) = &nksrr T nL ke, r1
i=0
So

gn,k+l,r = gr'z,k,r —-n: gn—l,k,r+l' (5 14)

When k£ =0, from (5.3), we can see that (5.9) holds. Assume that (5.9) holds for £; then
from (5.14), we have

k
i k —i —i
ke = V(o2 -n2 () D
i=0
The second summation in the right side of the last expression can be rewritten as

—nZ( 1)( )(n DD, —n(=1 (1= Dby s

k
N C N Al OV et g OGS,

From this, it follows that
™ k + 1 (k-+1-i)
gn,k+1,r = Z(—l) (n) th i+r >
i=0

that is, (5.9) also holds for k£ +1, and we are done. O

It is known that the generating function of {u{*)} is expressed by (2.7). It is well known that
the generating function of {v,} is
V(t)=Q2-xt)/(1-xt—-12). (5.15)

Differentiating (5.15), we can know that the generating function of vy is
V(@) =kl A+ A -xt -2 (k>1). (5.16)
Obviously, the following identities hold:
k'r!

Uk(t) U( )_—(_I:-———) k+r+1(t)
ACRAOSS B i W@ (r 2D
klr!

Uk(t)'Vr(t) ——"T k+r+1(t) (r>l)

(k+
U, () V()= E(Zfl = X)Upn(®);
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O V) =@ =W (k21)

Equalizing the coefficients of 7" of the two sides in each of the above identities, we have

Theorem 5.2:
Ry () — Kl Geren. 5.17
Z” D kAl ©-17)
klrl
_(k) (r) — (k+r+1) (k+r4 1) k 7 >1 5.18
k\r!
Fyr) — T Ckerd)) >1): 5.19
Zu n—l (k+r+1)'vn (r )’ ( )
2 1
§”’(k)""-"=m(2u£ﬁ" ) 520
Zvi(")vn_i = (2 D _ By (k> 1) (5.21)
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