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1. INTRODUCTION

K. T. Atanassov and others, in [3], [1], and [2], introduced (2, F) and (3, F) sequences which
were pairs and triples of sequences defined by two or three simultaneous Fibonacci-like recur-
rences, respectively, for which the exact definition will be given at the end of this section.

There are four (2, F) sequences, among which one is a pair of (1, F) sequences defined by the
original Fibonacci recurrence and the other three are essential. As we are interested in the solu-
tions of the systems of recurrence equations with the general initial conditions rather than the
resulting sequences for some particular initial conditions, we call such a system a "(2, F) system."
The (2, F) system consisting of two (1, F) recurrences is called a "separable (2, F) system," and
the other three are called "inseparable (2, F) systems."

In the case of three sequences, some of the thirty-six (3, F) systems of simultaneous recur-
rence equations give the same triple of sequences apart from their order provided appropriate
initial conditions. K. T. Atanassov [2] and W. R. Spickerman et al. [5] studied equivalence
classes of (3, F) systems of recurrences which give essentially the same sequences and determined
eleven classes. One of them consists of three (1, F) recurrence equations and three of them are
separated into one (1, F) recurrence and an inseparable (2, F) system of recurrence equations.
Therefore, we have seven classes of inseparable (3, F) systems of recurrence equations, for which
the definition will be given in Section 4.

The purposes of this paper are to establish the method of counting the number of equivalence
classes of (;m, F) systems consisting of m Fibonacci-like recurrences and the number of classes of
inseparable (m, F) systems, and give their values for small m. Furthermore, we apply the same
method to (m, F) systems where the Fibonacci-like recurrences in (m, F) systems are replaced
with f™-order recurrences of type (1). More precisely, an (m, F)) system is defined as follows.

Definition 1: A set of m recurrence equations o
EP ) = FP (o) + EX oy (k) + -+ FL (o (k) (forn2 f), )

where k£ =1,2,...,m and 0,,0,,...,0, are permutations belonging to the symmetric group S,, of

order m is called an (m, F*/)) system, and a set of m sequences {F\")(k)}, where k =1,2,...,m
and n=1,2,...,9, or a sequence of m-dimensional vectors that can be determined as the solu-
tions of this system with given initial values {F")(k)}, where k=1 2,...,m and n=1,2,..., f, is
called an (m, F/?) sequence. In particular, in the case f =2, it is called an (m, F) sequence.
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2. PREPARATION FROM GROUP THEORY

First, we recall a counting theorem given by Burnside.

Burnside's Theorem: Let G be a finite group of order |G| operating on a finite set M. Then the
number of distinct orbits associated with G is given by

1
— > A
IG]ggG l(g)’

where 4,(g) is the number of fixed points in M by g.

The proof can be found, for instance, in [4] and will be omitted here.

Now, let p,, denote the number of conjugate classes in S,,, and let 5, =|B,| be the number of
elements of the conjugate class B, fori=1,2,..., p,. Each o €S, can be represented as the pro-
duct of disjoint cycles uniquely up to their order. If o is represented as the product of 4, cycles
of length 1, A, cycles of length 2, ..., A4, cycles of length m, we say that it has the cycle type

1412%  mtm, )
where 4,, 4,, ..., 4,, are nonnegative integers satisfying
LA 42 A+ +m-A, =m. 3)

Two permutations in S, are conjugate if and only if they have the same cycle type since an

element 7 €S, satisfies non™' = o if and only if it does not change each cycle of & or just make
some permutations of the cycles of the same length. Since this gives also the condition that
n €8, satisfies no = o7, the centralizers of the elements of B, in S, must have the same order,

which will be denoted by ¢;. Since all permutations in B; have the same cycle type, we can repre-
sent it by (2). Then we have b, =m!/ (4,!1,!... A, 11424 m*») and
¢ =, A,NM2% e )
so that the relation
be =|S,|=m! (fori=12,...,p,) ®)
always holds.

The conjugate classes of cycle types of §,, bijectively correspond to the integer partitions of
m, and an algorithm for listing them can be found, for example, in D. Stanton and D. White [6].

3. THE EQUIVALENCE CLASSES OF (m, F\)) SYSTEMS

First, we consider (m, F/)) systems. Following the manner that K. T. Atanassov did for
m=2 and 3, for each m>0, an (m, F(")) system is defined by m simultaneous recurrence
equations F,,,(k) = F,(o,(k))+F,_(o,(k)), for n>3, where k=1,2,...,m and o, and o, are
permutations in S,,. This is the special case of (m, F() systems of recurrence equations defined
by (1) for f =2. If we give any initial values F,(k), where k=1,2,...,m and n=1,2, then an
(m, F) sequence {F,(k)}, where k=12,...,m and n=1,2,...,0, will be determined by these
recurrences. Since this (m, F) system is determined depending only on o, and &,, it will be
denoted by S(o,, 0,).
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Definition 2: Two (m, F) systems S(o,,0,) and S(7,, 7,) are said to be equivalent if there is an
n eS8, such that no,n™' = 7, and no,n' = r, are satisfied.

It is shown in W. R. Spickerman et al. [5] that two (3, F') systems are equivalent if and only if
they define the same triple of sequences up to their order by choosing appropriate initial values of
one of them for the given initial values of the other.

We define the operation of 77 €S, on the system S(o,, o,) by

1(S(ey, 02)) = S(moyy ™!, noyr ™). (6)

Assuming that the group acts on the set M ={S(o,,0,)|0,,0, €S,} in this manner, we
apply Burnside's theorem.

Let 77 be an element of S,,. Then 7 leaves S(o,, o,) fixed if and only if 7o' = o, and
no,m ' =o,, or no,=on and no, =o,n. If neB,, the number of such o, and o, are both
c;, so that ¢? of S(o,, o,) will be fixed by 7. Since we have b, permutations in B, the number of
systems fixed by permutations in a conjugate class B, sums to 5¢’. If we denote the number of
distinct orbits in M associated with §,, i.e., the number of equivalence classes in M by N(m, F),
using Burnside's theorem and relation (5), we can represent it as

N(m, F)=(2bc})/|S,|=Zc, (M

where the summation is taken over all the conjugate classes of §,,, and we can evaluate this value

by (4).
We can easily generalize this result to the (m, F7) system S(o}, 0, ..., o) which is defined
by the recurrences (1).

Definition 3: Two (m, F) systems S(oy,05,...,0,) and (), 75, .., 7,) are said to be equi-

valent if there is an 77 €S, such that 7o' = 7, 7o, = 7,, ..., and o 777" = 7, are satisfied.
Using the operation of 7 €S, on (m, F(") systems defined by
U(S(O_la 0-2’ LR O-f)) = S(no_ﬂfl, 770_277—1’ LA 770'f77—1) (8)

instead of (6), we will have the formula for the number of equivalence classes of (m, F()) sys-
tems N(m, F") in a manner similar to the case of (7, F) systems as

N(@m, F)=(2bc)) /|8, |= 2.

Thus, we have the following theorem.

Theorem 1: The number, N(m, F") of equivalence classes of the set of (m, F()) sys-
tems §(oy,0,,...,0,) defined by the recurrences (1) is given by N(m, F () =2/, where
¢ =AM A0 ... A,11M2%  m*m and the summation is taken over p,, congruent classes in S, cor-
responding to the sets of nonnegative integers A, 4,,..., 4, satisfying (3). In particular, for
f=2,wehave N(m, F) = Zc,.

For f =1, the value of N(m, FV) represents the number p, of congruent classes in S,
which is also the number of integer partitions of m. This number can be calculated by any algo-
rithm for finding all the cycle typesin S,,.
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If p,(r) denotes the number of integer partitions of k into exactly r parts, we can also calcu-
late the value of p,, directly using the following properties:

(i) Fork>0,p,()=p(k)=1,and p,(r)=0ifr> k.
@) It k>r>0,p()=p,(D+p,(2)+ +p_, ()
(i) py, = Pu(D)+pp(2)+--+ p,(m).
The values of N(m, F") for small m and f are shown in Table 1.

TABLE 1
"1 1 2 3 4 5 6 7
1 1 2 3 5 7 11 15
2 1 4 11 43 161 901 5579
3 1 8 49 681 14721 524137 25471105
4 1 16 251 14491 1730861 373486525 128038522439

4. THE NUMBER OF INSEPARABLE EQUIVALENCE CLASSES

As we have stated for the case m=2,3 and f =2, some of the (m, F/?) systems can be
separated into smaller systems.

Definition 4: An (m, F))) system S = S(0},0,,...,0,) is separable if there exists a nonempty
proper subset M’ of M ={1,2,..,m} such that M’ is stable (mapped into itself) by the permuta-
tions o,0,,...,0,. Then the system (1) can be partitioned into an (m, F) system and
an (m”, F)) system corresponding to M’ and its relative complement M"” = M — M’, where
|M'|=m’ and |M"|=m", and § is separated into an (m', F))) system S'(c}, 0%,...,0) and an
(m", FD) system S"(o1,0%,...,0%), where o} and o/ are restrictions of o, on M’ and M",
respectively, for s=1,2,..., f. Otherwise, S is said to be inseparable.

Definition 5: An (m, F() system S is said to have type 7 =1*12% __m*=if it can be divided
into A,(1, F") systems, 1,(2, FY)) systems, ..., and A,,(m, F") systems that are inseparable,
where A,,4,,...,4,, are nonnegative integers satisfying (3). If A,>0, § has a subsystem of
type t* consisting of A, inseparable (¢, F/?) systems, which is referred to as the t-part of S. If
A, =0, we say that the ¢-part of S is empty.

Besides the symbol N(m, F") defined above, we need the following notations.
Notations

S(m, F): The number of equivalence classes of separable (m, F(/)) systems.
I(m, F): The number of equivalence classes of inseparable (m, F(/?) systems.
N[T, F(D]: The number of equivalence classes of (m, F(") systems of type 7.

When we discuss a fixed f, we sometimes abbreviate the above symbols as N(m), S(m), I(m),

and N[T1], omitting\F 28
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H(n,r): The number of r-combinations with repetition of n distinct things, which is given by
Hn r)=(”+"“1)=—(”+"1)’
’ r (n-ntr1’
where we use the convention H(n, 0) =1 for n> 0 as usual.

Using the notations defined above, we can state the next theorem.

Theorem 2: The numbers N[1*12*2 ... m*], S(m), and I(m) are given by the following formulas:
N[1"2% =] =TIH(I(2), 4,), %)
where the product is taken over r =1,2,...,m;
S(m) = EN[1M2%  (m—1)*1] and I(m)= N[m']= N(m)-S(m),
where the summation is taken over all the integer partitions of m into more than one part or all of
the (m—1)-tuples of nonnegative integers A,, 1,, ..., 4,,_, satisfying
1A +2- A+ 4+(m=DA,_,=m.

Proof: Let S=S8(0,,0,,...,0/) be an (m, F)) system defined by (1). A system 7S(c,
0y, ..., O7) equivalent to S, which is defined by (8), is given by replacing functions FY)(x) in all
terms of (1) with EY)(n(x)) for s=n+1,n,n-1,...,n— f +1, and rearranging the m equations so

that 77(k)'s of the left-hand side become increasing in order. If the (m, F”) system S is separ-
able, then the nonempty subsets A/’ and M" in Definition 4, which are stable by o0y, 0, ..., 0,

are mapped onto 7(M’) and n(M"), which are complements of each other and are stable by
nom,not, .. no fn"l. Therefore, it is clear that two equivalent systems have the same type

and two systems of the same type are equivalent if and only if their z-parts are equivalent for
=12, .., m

The equivalence class of the #-part of S will be determined by the classes of I(f) to which
A,(t, F) subsystems of S belong, not depending on the location or the variables used in them.

Therefore, the number of equivalence classes of the z-part with type t* of (m, F("V) systems is
the number of A,-combinations with repetition taken from 7(#), which is denoted by H(I(¢), 4,).
Since different choices of an equivalence class for any #-part give different equivalence classes of
(m, F) systems of type T'=1*12% ___m*n | their number will be represented by (9).

Since N(m, F()) is the sum of expression (9) for all the solutions of equation (3), and the
only solution of (3) with 4, >0 is givenby 4, =4, =---=4,_,=0and A, =1, and the type of an
inseparable (m, F/)) system is m', we have

S(m) = N(m)—I(m) = N(m) - N[m']= IN[1"2* __ (m—-1)*1],

and the proof'is completed.

Since we have only one equivalence class for (1, (")) system, the number of equivalence
classes of (m, F) systems of type 1*12*2 . (m—1)*»1 for which A, >0 must be equal to the
number of equivalence classes of (m—1, F)) systems of type 1M12%2 . (m—1)*1, so the total
number of equivalence classes with nonempty 1-parts of (m, F/)) systems is equal to N(m—1).
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Since an (m, F/)) system with an empty 1-part cannot have an (m—1)-part, we have another
expression for S(m) and /(m) that is useful for inductive calculation.

Corollary: S(m)= N(m-1)+2XH(I1(2), A,)H(I(3),4;)... HI(m-2), A,,_,), where summation is
taken over all the nonnegative integers 1,, 45, ..., 4,,_, satisfying 2-4, +3- A, + - +(m-2)-4,,_,
=m and I(m) = N[m']1= N(m)-S(m).

The numbers of equivalence classes N[7] for T with small values of m and f =2 and 3 are

given in Table 2, where the number /(m) = N[m'] of equivalence classes of inseparable (m, F(")
systems can be found in the right-most column for each m.

w ok

6.

TABLE 2
m=2 m=3
R4Sy I[P 1273
2 [1:3 2 |1 37
3 |1:7 311 7 41
m=4 m=35
f T 14 1221 1131 22 41 f T 15 1321 1231 1122 1141 2131 51
1 3 7 626 2 |1 3 7 6 26 21 97
1 7 41 28604 3 |1 7 41 28 604 28713753
m=6
NI 112t P32 4 o123 18t 22 24t 3 6
1 3 7 6 2 21 97 10 78 28 624
1 7 41 28 604 287 13753 84 4228 861504243
m=7
f T 12t '3t o2 o4t o123 s 12t 124 '3 r'e' 2’3" 28 34t | 7'

2 1 3 7 6 26 21 97 10 78 28 624 42 291 182 | 4163
3 1 7 41 28 604 287 13753 84 4228 861 504243 1148 96271 24764 i 24824785
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