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1. INTRODUCTION 

Pascal's triangle with entries reduced modulo 2 has been the object of a variety of investiga-
tions, including number theoretical questions on the parity of binomial coefficients [4] and geo-
metrical explorations of the self-similarity of the Sierpinski triangle [7]. Graph theoiy has also 
entered the scene as a consequence of various binary (that is, {0, 1}) matrix constructions that 
exploit properties of Pascal's triangle. For example, in [2] reference is made to Pascal graphs of 
order n whose (symmetric) adjacency matrix has zero diagonal and the first n-1 rows of Pascal's 
triangle, modulo 2, in the off diagonal elements. Constructions such as these are of special inter-
est when the corresponding graphs unexpectedly reveal or reflect properties intrinsic to Pascal's 
triangle. 

This is the case with binomial graphs, the subject of this paper. The adjacency matrices of 
these graphs are also related to Pascal's triangle, modulo 2. The graphs are found to exhibit a 
number of interesting properties including a graph property that relates to the Fibonacci sequence. 
Recall that the 17th Fibonacci number F„ appears in Pascal's triangle as the sum: 

Other properties of binomial graphs relate to the golden mean, to the Lucas numbers, and to 
several other features associated with Pascal's triangle. 

2. BINOMIAL GRAPHS 

For each nonnegative integer n, we define the binomial graph Bn to have vertex set Vn = 
{Vj J = 0,1,..., 2" -1} and edge set En = {{v„ vy}: (7 ) = 1 (mod2)}. We define (g) = 1; thus, each 
binomial graph has a loop at v0, but is otherwise a simple graph (that is, has no other loop and no 
multiedge). The binomial graph B3 and its adjacency matrix A (B3) are depicted in Figure 1. 

Obviously, \Vn\=2". Also, for each k = 0,1,..., n -1, Bn has ("k) vertices of degree 2k and a 
single vertex, v0, of degree 2" +1. Thus, the sum of the degrees of vertices in B„ is 

X(^+(2^i) = i + X02^r + i . 

Consequently, \E„ |= ±(3" +1). 
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The adjacency matrix A(Bn) exhibits a self-similarity. In this form, it can be described in 
terms of a Kronecker product of matrices. Recall that if A = [av] is an mxn matrix and B is a 
p x q matrix, then the Kronecker product A ® B is the mp x nq matrix, A ® B = [avB]. 
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FIGURE 1. The Binomial Graph B3 and Its Adjacency Matrix 

Thus, if we take A(BQ) = [1], then, for each n > 1, the adjacency matrix of the binomial graph 
B „is 

A(B„) = AiB^) AiB^j 
A{Bn_x) 0 

1 1 
1 0 ®A(B„_l) = A(Bl)®A(B„_l). 

3. SPECTRA OF BINOMIAL GRAPHS 

The eigenvalues of a graph G are the eigenvalues of^4(G), the adjacency matrix of G. The 
spectrum of a graph is the sequence (or multiset) of its eigenvalues. We denote the spectrum of 
graph G by A(G). 

To obtain the spectrum of the binomial graph Bn, we exploit the following result concerning 
Kronecker products. 

Lemma 1 (see [1]): Let A be an nxn matrix with (not necessarily distinct) eigenvalues Xh X2, 
...,AW and eigenvalues xl9x2, ...,*„. Let B be an mxm matrix with eigenvalues M^Mi^-^Mm 
and eigenvectors yl9 y2,..., ym. Then the Kronecker product A ® B has nm eigenvalues Aj/jj and 
eigenvectors xt ® y} for each i = 1,2,..., n and each j = 1,2,..., m. • 

We use this lemma to establish that the eigenvalues of binomial graphs are powers of the 
golden mean, as are the entries in the corresponding eigenvectors. 

Theorem 1: Let <p = -̂ (1 - V5). For each n > 0, the binomial graph Bn has n +1 distinct eigen-
values, specifically, {-V)j(pn~2j, for each 7 = 0,!,...,«. Each of these eigenvalues occurs with 
multiplicity ("), so that the spectrum of Bn is 

A(5) = [((-l)>w-20("):7 = 0,l, . . . ,4 
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where A(m) means that the eigenvalue X has multiplicity m. Furthermore, for n>\, IP linearly 
independent eigenvectors of Bn are scalar multiples of the columns in the Kronecker product 
X(Bn) = X(Bl)®X(Bn_l), where X(Bn) = [xhx2,...,x2„] is the matrix of eigenvectors of Bn 

with 

\/<P ~<P 

Finally, the characteristic polynomial of Bn is 

g>(B„,X) = Ylix-(-iy<p"-2Jf. 
J=0 

Proof: Since A(BQ) = [1], obviously A(B0) = [1] and 2P(50; x) = x - 1 . Since 

ABdA 1 1 
1 0 

then 

&(Bi, x) = det x-l -1 
-1 x = x2-x-l, 

so that A(Bj) = [p, -•£•], as required by the theorem. Furthermore, the two eigenvectors are 
*iT = [1, p~l] and xj = [1, - <p\ (or scalar multiples thereof), so that 

X(B1) = 1 1 
\ l q> -<p 

Since, for each n > 1 
A(B„) = A(Bl) ®/l(5„_1) = ,4(51) ®A{B,) ®-®A{Bx), 

n factors 

then, by Lemma 1, the spectrum A(Bn) consists of the «-fold (Cartesian) product of eigenvalues 
from the spectrum A(BX) = [<p, - £ ] . That is, the 7th distinct eigenvalue A. of Bn is the coefficient 
of (")tJ in the expansion of 

<p-<P u-iyry-2jtj\ 
and the multiplicity of Xj is ("). Furthermore, also by Lemma 1, X(Bn) =X(BX) QXiB^). • . 

4. CHARACTERISTIC POLYNOMIALS OF BINOMIAL GRAPHS 

A polynomial of degree n, P(x) = Hk=0ckxk, c0 * 0, is called palindromic if, for each k = 0, 
...,«,\ck\ = \cn_kI (see [3] and [6]). Some interest attaches to graphs whose characteristic 
polynomials are palindromic. A palindromic polynomial is said to be exactly palindromic if, for 
each k9 ck = cn_k and skew palindromic ifck = -cn_k. A palindromic polynomial of even degree is 
called even pseudo palindromic if, for each k, ck = (-l)kcn_k and odd pseudo palindromic ifck = 
"(-l)V*-
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By expressing the characteristic polynomials of binomial graphs as products of simple (unit) 
quadratic factors involving the Lucas numbers, we show that the binomial graphs are palindromic 
with respect to their characteristic polynomials. 

From Theorem 1, ^{BQ; x) = x - 1 is obviously skew palindromic. For even n > 0, 

(̂5M;x) = n[x-( - l )>^f 
;=0 

(«-2)/2 
= (x-(-i)n/2)("k' n [x2~{-\)\(pn-2j+^-2j)x+{-iyfJ\ 

7=0 

where q> - --^ (= ^-y^-). Since, for even n > 0, the central binomial coefficient (n
n
/2) is even, then 

®(B„x) = (x2-(-iy/2L0x + iy("") n [xi-(-iyLn_2jx + lf\ 
j=0 

where Lk is the k^ Lucas number for k > 1 and 1^ = 2. Consequently, for even n > 0, 2?(i?„; x) is 
a product of exact palindromic (quadratic) polynomials; hence, see Lemma 2.2 in [3], ?P(Bn; x) is 
exact palindromic. 

For n odd, Bn has no eigenvalue of unit magnitude, but similarly, 
(n^f2 , .J»\ 

2?(5„;x)= f [ [^-(- lyA.-ayX-l^1 , 
;=0 

so that ^(Bn, x) is a product of 2"~l odd pseudo palindromic polynomials. Obviously ^P{Bn\ x) is 
odd pseudo palindromic but (see [3], Lemma 2.2), for each odd n > 1, &(Bn, x) is even pseudo 
palindromic. 

Note that for each binomial graph Bn with n > 1, the characteristic polynomial 2P(5W; x) can 
be expressed as a product of unit quadratic factors whose central coefficients are Lucas numbers 
Lk with k = n (mod 2). 

5. CLOSED WALKS IN BINOMIAL GRAPHS 

As was observed by P. W. Kasteleyn [5], the characteristic polynomial 2P(G; x) of a graph G 
can be applied to determine the number of closed walks of fixed length in G. We state this result 
as 

Lemma 2: The total number of closed walks of length k in a graph G is the coefficient of tk in 
the generating function 

^ ( G ; } ) : ^ ( G ; 0 = ̂ i y , where n G ; x ) - ^ S ? ( G ; x ) . D 

By applying this lemma to the graphs Bn, we obtain a connection between binomial graphs 
and the Lucas numbers. 

Theorem 2: The (ordinary) generating function for the total number of closed {walks of length k 
in the binomial graph Bn is 
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W(Bn,t) = -£L"ktk
y 

where Lk is the k**1 Lucas number for k > 1 and 1^ = 2. 

Proof: By Lemma 2, 

t®{B„AY 
where, from Theorem 1, 

;=0 

Setting q> - -•£• (= ̂ y^), we can write 

Taking the logarithm of both sides and differentiating with respect to x yields 

9*(ff,;*) = Y (7) 

It follows that 

y=0 l - ^ > 't M\JJk^ 

1 (t (n^jV"-j)k\k=i>*+vkytk=±L-ktk. n 

Consider now the number of closed walks of length k in Bn with initial (and final) vertex v0. 
Let W0(Bn; t) denote the generating function for this sequence. To determine the coefficients of 
this generating function, we first need the following lemma. 

Lemma 3: Let Vj eV(Bn) with the vertices labeled in natural order {0,1,..., 2" -1} and let wn(j) 
denote the representation of the natural number j as a binary word of length n. Then {v,, Vj} e 
E(Bn) if and only if wn(i) and wn(J) have no 1-bit in common. 

Proof: The lemma is an immediate consequence of the fact that 

^ ) = (''y).l(mod2) 

if and only if wn(i) and wn(j) have no 1-bit in common. D 

Theorem 3: The number of closed walks of length k with initial vertex v0 in Bn is the coefficient 
of tk in the generating function 

W0{B„,t) = fjFk"+lt* 
k=0 

where Fk is the kih Fibonacci number. 
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Proof: The statement is easily verified for k = 0 or 1: the number of closed walks starting at 
v0 in Bn is equal to 1 in each case. For k >2, a walk of length k in Bn can be described as an 
ordered list of k +1 vertices. Let each vertex v. (j = 0,1,..., 2n -1) be labeled with the corre-
sponding binary word, wn(j), of length n. Then a walk of length k in Bn can be described as an 
ordered list of k +1 binary words each of length n and such that no two consecutive words have a 
1-bit in common. Obviously, for a closed walk commencing at vertex v0, the first and last binary 
word is the zero word wn(0). 

Consider the (k -1) x n matrix M, whose rows in sequence are the binary words describing a 
closed walk in Bn starting at v0, with the first and last word wn(0) deleted. Now the columns of 
Mean be viewed as n independent and ordered {0,1}-sequences of length k-l, with the property 
that no two 1 -bits are adjacent. Since there are exactly Fk+l such sequences, where Fk is the k^ 
Fibonacci number, it follows that there are Fk+l binary words of length n in which no two con-
secutive words have a 1-bit in common. That is, the number of closed walks of length k from v0 

mB„isFk"+v D 
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