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1. INTRODUCTION 

Let u(r, s) and v(r, s) be Lucas sequences satisfying the same second-order recursion rela-
tion 

w„+2=w„+1 + w„ (1) 

and having initial terms u0 = 0, ux = 1, v0 = 2, vx = r, respectively, where r and s are integers. We 
note that {Fn} = w(l, 1) and {Ln} - v(l, 1). Associated with the sequences u(r, s) and v(r, s) is the 
characteristic polynomial 

f(x) = x2-rx-s (2) 

with characteristic roots a and J3. Let D = (a - P)2 = r2 + 4s be the discriminant of both u(r, s) 
and v(r, s). By the Binet formulas 

un = {an-P")l{a-P) (3) 

and 

vn = an+J3n. (4) 

We say that the recurrences t/(r, s) and v(r, s) are degenerate if aJ3 = -s - 0 or a IP is a root of 
unity. Since a and J3 are the zeros of a quadratic polynomial with integer coefficients, it follows 
that a I (5 can be an rfr root of unity only if n - 1,2,3,4, or 6. Thus, w(r, s) and v(r, #) can be 
degenerate only if r = 0, s = 0, or D < 0. 

We say that the integer m is a divisor of the recurrence w(r, s) satisfying the relation (1) if 
m\wn for some n > 1. Carmichael [2, pp. 344-45], showed that, if (m, s) = l, then m is a divisor of 
u(r, s). Carmichael [1, pp. 47, 61, and 62], also showed that if (r, 5) = 1, then there are infinitely 
many primes which are not divisors of v(r, s). In particular, Lagarias [4] proved that the set of 
primes which are divisors of {Ln} has density 2 / 3. Given the Lucas sequence v(r, s), we say that 
the integer m is Lucasian if m is a divisor of v(r, s). In Theorems 1 and 2, we will show that, if 
u{r, s) and v(r, s) are nondegenerate, then un is not Lucasian for all but finitely many positive 
integers n. We will obtain stronger results in the case for which (r, s) = 1 and D > 0. 

A related question is to determine all a and b such that va divides ub. Using the identity 
uava = u2a, one sees that va always divides u2a. Since f̂  J% i£2a\b, we have that va |wft if 2a |6. 
We will show later that if rs * 0, (r, 5) = 1, |va | > 3, and va \ub, then 2a|#. 
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Theorem 1: Consider the Lucas sequences u(r, s) and v(r, s). Suppose that rs ̂  0, (r, s) = 1, 
and D > 0. Let a and b be positive integers. Then ua \vb if and only if one of the following condi-
tions holds: 

(i) a = l; 
(ii) | r | = l o r 2 a n d a = 2; 

(Hi) \r | > 3, a = 2, and b is odd; 
(iv) \r\= 1,5 = l,a = 3, and 3\b; 
(v) \r\= l,a = 4, and 2|ft oddly, where m|w oddly if H//W is an odd integer. 

In particular, ww, ^ > 5, is not Lucasian. 

Theorem 2: Consider the nondegenerate Lucas sequences u(r, s) and v(r, s). If (r, 5) = 1 and 
D < 0, then ww is not Lucasian for n > e45226S. If (r, 5) > 1, then there exists a constant N(r, s) 
dependent on r and s such that un is not Lucasian for n > N(r, s). 

2. NECESSARY LEMMAS AND THEOREMS 

The following lemmas and theorems will be needed for the proofs of Theorems 1 and 2. 

Lemma 1: u2n-ur^n. 

Proof: This follows from the Binet formulas (3) and (4) and is proved in [6, p. 185] and [3, 
Section 5]. D 

Lemma 2: 
u„(-r,s) = (-ir\(r,s). (5) 
vn(-r,s) = (-l)\(r,s). (6) 

Proof: Equations (5) and (6) follow from the Binet formulas (3) and (4) and can be proved 
by induction. D 

Lemma 3: Let u(r, s) and v(r, s) be Lucas sequences such that rs * 0 and D = r2 +4$>0. Then 
\un\ is strictly increasing for n>2. Moreover, if | r |>2, then \un\ is strictly increasing for n>\. 
Furthermore, | vn \ is strictly increasing for n > 1. 

Proof: By Lemma 2, we can assume that r > 1. The results for \un \ and \vn \ clearly hold if 
s> 1. We now assume that r>\ and s<-1. Since D>0, we must have that -r2 /4 <s< - 1 , 
which implies that r >3. We will show by induction that, if w(r, s) is any recurrence satisfy-
ing the recursion relation (1) for which wQ>0, w{>\, and wx>(r /2)wQ, then wn > 1 and 
wn >(r/2)ww_! for all n>\. Our results for u(r,s) and v(r,5) will then follow. Assume that 
n > 1, and that wn>\9 wn_x > 0, wn > (r 12)wn_l. Then wn_x < (2 /r)wn. By the recursion relation 
defining w(r, s), we now have 

so that wn+l > 1 and the lemma follows. • 

Lemma 4: Consider the Lucas sequences u(r, s) and v(r, s). Then un \uin for all /' > 1 and 
Vn\V(2J+l)n^TMj>0. 
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Proof: These results follow from the Binet formulas (3) and (4). D 

Lemma 5: Consider the Lucas sequences u(r, s) and v(r , s) for which (r , s) = 1 and r and s are 
both odd. Then un even <=> vn even <=> 3 \n. 

Proof: Bo th sequences are congruent modulo 2 to the Fibonacci sequence, for which the 
result is trivial. D 

For the Lucas sequence u(r, s ) , the rank of apparition* of the positive integer m, denoted by 
co{rri), is the least positive integer n, if it exists, such that m\un. The rank of apparition of m in 
v(r , s ) , denoted by G>(m), is defined similarly. 

Lemma 6: Consider the Lucas sequences u(r, s) and v(r , s ) . Let p be an odd prime such that 
/ ? | ( r , s ) . If a)(p) is odd, then #>(/?) does not exist and/? is not Lucasian. 

Proof: This was proved by Carmichael [1 , p . 47] for the case in which (r, s) = 1. The proof 
extends to the case in which /? J(r , s ) . D 

Lemma 7: Consider the Lucas sequences u(r, s) and v(r , s ) . Suppose that p is an odd prime 
such that p\{r, s) and co(p) = 2n. Then W{p) = n. 

Proof: This is proved in Proposition 2(iv) of [10]. D 
W e let [n]2 denote the 2-valuation of the integer n, that is, the largest integer k such that 

2k\n. 

Lemma 8: Consider the Lucas sequence v(r , s). Suppose that m is Lucasian and that p and q are 
distinct odd prime divisors of in such that pq\(r, s). Then [a>(p)]2 = P ^ X k -

Proof: This is proved in Proposition 2(ix) of [10]. D 

Theorem 3: Let w(r, 5) and v(r, s) be Lucas sequences such that rs * 0 and (r, s) = 1. Let a and 
b be positive integers and let d = (a, i ) . 

fVrf if[«]2=[*L 
ffl> ( ^ ) = [ l o r 2 othenvise; 

w (^n)=(lor2 otherwise 

Proof: This is proved in [7] and [3, Section 5]. • 

Remark: It immediately follows from the formula for (ya,ub) that if rs*0, ( r , s ) = l , and 
| v j > 3 , then va|w6 if and only if 2a\b. Noting that v2 = r 2 + 2 5 , w e see by Lemma 3 that if rs^O 
and D = r 2 + 4 ^ > 0, then | v a | > 3 for a> 2 . 

W e say that the prime/? is a primitive prime divisor of un if p \ u n but / ? | ^ for 1 < / < n. 

* Plainly, "apparition" is an intended English translation of the French "apparition." Thus, "appearance" would 
have been a better term, since no ghostly connotation was intended! 
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Theorem 4 (Schinzel and Stewart): Let the Lucas sequence u(r, s) be nondegenerate. Then 
there exists a constant N{(r,$) dependent on r and s such that un has a primitive odd prime divisor 
for all n>Nx{r,s). Moreover, if (r, s) = l, then un has a primitive odd prime divisor for all 
n>e452267. 

Proof: The fact that the constant Nx(r,s) exists for all nondegenerate Lucas sequences 
u(r, s) was proved by Lekkerkerker [5] for the case in which D > 0 and by Schinzel [8] for the 
case in which D<0. The fact that if u(r,s) is a nondegenerate Lucas sequence for which 
(r, s) = 1, then an absolute constant N, independent of r and s, exists such that un has a primitive 
odd prime divisor if n > N was proved by Schinzel [9]. Stewart [11] showed that N can be taken 
tobee452267. D 

3. PROOFS OF THE MAIN THEOREMS 

We are now ready for the proofs of Theorems 1 and 2. 

Proof of Theorem 1 
By Lemma 4 and inspection, it is evident that any of conditions (i)-(iv) implies that %\vh. 

Now suppose that \r \ > 3, a - 2, and ua \vb. Then |ua | = |vx | = \r \> 3. By Theorem 3(ii), we see 
that b is odd. By Lemma 5, if r - ±1, s - 1, ua \vb, and a = 3, then 3 \b. Suppose next that \r |= 1, 
a = 4, m<\ua\vb. Since D = r2 +4s>0, we must have that s>l. Then, by Lemma 1, \ua\ = 
|v21 = 2s +1 > 3. By Theorem 3(ii), it follows that 2\b oddly. 

We now note that if D > 0 and rs * 0, then |ua \ < 2 if and only if a = 1, or \r \ < 2 and a - 2, 
or \r | = 1, s - 1, and a = 3. Thus it remains to prove that 

// ua \vb and \ua \ > 3, then either 
| r |>3anda = 2, or (7) 
\r\= 1 and a = 4. 

We prove (7) by first proving a lemma which is, in fact, a weaker statement, namely, 

Lemma 9: If Z>>0, rs*0, (r,j) = l, |f/J = |v6|, and |i/fl|>3, then either | r |>3anda = 2, or 
| r | = l a n d a = 4. 

Proof of Lemma 9: Since \ua \ = |v61 > 3, (ua, vb) = |v̂  | > 3. Thus, by Theorem 3(iii), we con-
clude that [a]2 > [b]2; hence, (ua, vb) = \vd\, where d - (a, b). Thus, \vb \ = \vd |; but by Lemma 3, 
|vw| is an increasing function of n for n positive. Therefore, b-d and b\a. Since [a]2 >[6]2, we 
have that 2b\a and so, by Lemmas 1 and 4, vb\u2b\ua. But |wj = |v j . Hence, by Lemma 1, 
1% I= I v b I = \vbub \> anc^ so |w61= 1. Since \u„ | is an increasing function of n for n > 2 by Lemma 3, 
we see that b = 1 or 2. We can only have that b = 2 if \r \ = 1. However, |vb | > 3, so either b = 1 
and \ua\ = \vb\ = \r\>3, implying that a = 2, or 6 = 2, | r |= l , s>\, and |wa| = |v^| = 2j + 1^3, 
which implies that a = 4. 

Proof of (7): Since */a |v6 and |wfl | > 3, we have that (ua, vb) = \ua | > 3. Using Theorem 3(iii), 
we infer as in the proof of Lemma 9 that |wj = lv</1, where d = (a, b). Hence, by Lemma 9, either 
| r |>3 aiida = 2 , 'or | r |= l anda = 4. D 
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Proof of Theorem 2 
First, suppose that (r, $) = l. Now suppose that n > 3452268 and n is odd. By Theorem 4, un 

has a primitive odd prime divisor p. By Lemma 6, p is not Lucasian and hence un is not Lucasian. 
Now suppose that n > 3452268 and n is even. Then, by Theorem 4, unl2 has a primitive odd prime 
divisor px, and un has a primitive odd prime divisor p2. By Lemma 8, pxp2 is not Lucasian. 
Since un/2 \un by Lemma 4, we see that un is not Lucasian. 

Now suppose that (r, s) > 1. By Theorem 4, there exists a constant N^r, s)>2, dependent 
on r and s, such that if n > Nx(r, s), then un has a primitive odd prime divisor. We note that if/? is 
a prime and p\(r, s), then <*>(/?) = 2. Taking Af(r, 5) = 2Nx(r, s), we complete our proof by using 
a completely similar argument to the one above. D 
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