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PROBLEMS PROPOSED IN THIS ISSUE

H-526 Proposed by Paul S. Bruckman, Highwood, IL
Following H-465, let 1, r,, and r; be natural integers such that

3
Z kr, =n, where n is a given natural integer.
k=1
Let
1 (i +r+n)!
n+n+r Rl o

Natyst3

Also, let

C,=ZXZB, , ,,summed over all possible 1, 7,, 7.

Define the generating function
F(x)=) Cx".
n=6

(a) Find a closed form for F(x);
(b) Obtain an explicit expression for C,;
(¢) Show that C, is a positive integer for all 7> 7, n prime.

H-527 Proposed by N. Gauthier, Royal Military College of Canada

(M

@

©)

4)

Let g, a, and b be positive integers, with (a,5) =1. Prove or disprove the following:

a=1 b-1 F F F
' —1)g(br+as — Z4g(atb-abygab , _ qyg(1-ab) Zq(2abl) .
a) Z Z ( 1) LZq(br+as) - F Fb +( 1) F >
r=0 s=0 qa~ q q
(br+as<ab)
a=1 b-1 L F L
- (2ab-1) qab*~“q(a+b-ab)
b) 5 Z Z (_l)q(br-}-as)}yz — (__l)q(l ab) q _ )
q(br+as)
r=0 s5s=0 F;] F;WF‘qb
(br+as<ab)

H-528 Proposed by Paul S. Bruckman, Highwood, IL
Let Q(n)=2

following:

piln
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e, given the prime decomposition of a natural number n =[] p°.

Prove the
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ADVANCED PROBLEMS AND SOLUTIONS

(A) zl:,(“ 1)Q(d)F Qn/d)-Q(d) ~ 0;
dln
B) ;( 1) Q(n/d) Q) = =2U,, where U, = 1—"[ e+l
n pin
SOLUTIONS
Poly Forms

H-508 (Corrected) Proposed by H.-J. Seiffert, Beriin, Germany
(Vol. 34, no. 1, February 1995)

Define the Fibonacci polynomials by Fy(x)=0, F(x)=1, F(x)=xF_,(x)+F,_,(x), for
n>2. Show that, for all complex numbers x and y and all positive integers #,

E0F()= nE (gkt’a)(w) F(”’ 4) )

xX+y

As special cases of (1), obtain the foliowing identities:

1 n—k+1 IL . )
F(x)F,(x+1) = n“( k> 1 (;k++lJ]?k+l(x2+x+4, )
2 n+2k\ x* +4 * .
FE(x)E(4/x)= nz 2k+1(4k+1) ] X0, (3)
( l}n —k+1 k '
F(x)? —n];) P (§k++l)(x2+4)’f, ‘(4)
2k+2_ _4}k+1
2n-2 k
F(9=Cn-D % (k”l (P55 PR ©)

Solution by the proposer

We also consider the Lucas polynomials defined by Ly(x)=2, Li(x)=x, L(x)=xL,_,(x)+
L, ,(x), for n>2. It is known that

F,(x) = ﬁ(f}x‘———ff‘i— and L, (x) = a(x)" + B(x)", ™
where a(x) = %(x +4/x? + ) and B(x) = %( —xt+ 4), and that
By (x) = Z ( 2nk++k1) X2k

Integrating the latter equation and noting that L} (x) = 2nF,,(x) and L, (0) =2 gives
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ADVANCED PROBLEMS AND SOLUTIONS

= 1/ n+k )
7 2= E 2k+2
ZH{X) ? =0 k+1 k2k + 1/ * ’ (8)

Since both sides of the stated equation (1) are analytic functions of x and y, it suffices to
prove it for real x and y such that x> y > 0. Let

u :%(w/(x2+4)(yz +4) +xjy—4)
v=1(JoP+ 407 +4) - xp +4)

Then we have w >0 and v>4. From (8) it follows that

and

j;2n(\/1;) - LZn(l\/;) _ = 1 /n +k
u+v _n,gg k+1 2k+1)Ak+1’ ©)
where i = /(1) and
) -\/\_,)21'
4= N
4 uty 0 J S0
Since u—v =xy—4 and uv = (x + y)*, it is easily seen that
Aj :(xy_4)Aj—l+(x+y)2Aj—2’ ]22:
so that, by 4, =0 and 4, =1, we must have
A =(x +y) (M} jeN;. (10)
X+y
Simple calculations show that
a(Vu) =1 (2u+4+2 Ju(u+4)) = a(x)a(y),
Bu)t =4 (2u+4-2.[ulu+4)) = f)B),
and, since x 2 y,
a(iv)? =~L(2v-4+2,/v(v-4)) = a(x) (),
Bl =-L2v-4-2,[v(v-4)) = f()a(y).
From these four equations and (7), it follows that
R, ) = = Laf19) an

u+v
Now, the desired identity (1) follows from (9), (10), and (11).
Using the properties F(-x) = (—1)1‘114}(35), £,(0)=0, and F;;,,(0)=1, we show that (2)-
(6) are all special cases of (1). Since we wish to exhibit some particular cases, we also note that
F(&)=F,/2, FG)=i""F,, B,05=5F,/3, F, (/5)=L,,,/3, and 5"V F (4/5)=
(5"-(-1)")/6. Also, let P, = F,(2) denote the n™ Pell number.

(2): In (1), replace x by —x and then take y = x+1. We note the interesting particular case
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ADVANCED PROBLEMS AND SOLUTIONS

1 n—k+1 k
E.F, = "Z (__l’_‘(;k-:. 1)Ec+1(6)'
k=0

(3): Take y=4/x,x#0. For x=1 and x = 2, we obtain, respectively,

_J _J
[ n+2k ek 2 L) n+2k\,
g k+1(4k+1)25’ and P,,_ng (4k+1 16°.
With x =+/5, eq. (3), after replacing n by 2n and n by 2n—1, produces the curious identities:

36n =1 2n+2k) ken-1-k
Fp=— 81+5 1%,
i 25"—1,;)2k+1(4k+1 ’

18(2n-1) 2n+2k =1\ g ken-1-k
Lina =g 22k+1( Akl )815 :

(4): Take y =—x. For x=1,x=3i, and x =2, we obtain, respectively,

n-1 n—k+1
2 _ (=D n+k \cr
F, —n];) i+l (2k+1)5’

n—1
2 _ 1 (n+k\«
P —"kZ:;) k+1(2k+l)5 ’

¥ T - (;k++kl) 8.

im k+1

and

(5): Take y = x and use the Binet form of the Fibonacci polynomials. For x = 3i, this gives

2 (= 1)"_k+1 n+k ) gkl k4l
P =3 ,;) i1 \2k+1)OT 4T

(6): In (1), replace n by 2n—1 and then set y=0. For x=1 x=4, x=+/5, and x=2, we
obtain, respectively,

2n-1%2 (-0 (2n+k-1
}an—i = ( ) (

2 A~ k+1\ 2k+1 )F3k+3’

2n-2

2n+k-1

Fopa=(4n-2) & M( ke R
k=0

_ 1% (- l)k(2n+k 1) k
L 5 +1_ _l k+1
4n-2 2 prt k+1 2k+1 ( ( ) )9
and 2n-2 k
)" (2n+k-1
Bra=n-) ¥, S0k arp,
k=0

Also solved by P. Bruckman and A. Dujella.
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Pell Mell

H-510 Proposed by H.-J. Seiffert, Berlin, Germany
(Vol. 34, no. 2, May 1996)

Define the Pell numbers by £, =0, ;,=1, P,=2P, ;+P,_, for n>2. Show that
—2n- +k
P = Z (= 1){@k-2n-D/45[3%/2] ( ;k . 1), forn=12,..,
ked,
where [ ] denotes the greatest integer function and A4, = {k €{0,1,...,n—1}|3k # 2n (mod 4)}.
Solution by the proposer

First, we prove two theorems concerning the Fibonacci polynomials defined by

(-xz-2)' = Y E ()2, )
n=0
which are also of interest in themselves.

Theorem 1: For all real x one has
“ k +1 -n—k ~k -2
F,.(x)= (n+ )1 (x —2i)*, where i* = -1.
+1 kz;?) 2k +1

Proof: Consider the special Jacobi polynomials defined by

(1-2xz+2%) 7 = ZC!(x)z =12,. )
n=0
It is well known [1, p. 374] that C/ has the derivatives
dk J P (JHk-D! +k D! A

If we substitute z by iz in (2) and compare the newly obtained equation with (1), we see that
F,,,(x) =i"Ci(x/2i). Thus, we have (3), and simple calculation gives

dk

WF,,H(x) k1" CE (e / 2i). @

Since F;,, is a polynomial of degree n, and since [1, p. 374]
kel (PHE+]
G ‘( 2% +1 )
the stated equation follows from (4) and Taylor's theorem. Q.E.D.

Theorem 2: For positive reals x one has
- (n+k+1
E(x)= Z( ki1 )A" cosa,
k=0
where A = (x* +4)V? and a;, = (n— k)7 /2 -k arccos(x/ A).
Proof: Since i =¢™'? and x —2i = Aexp(~iarccos(x/ A)), Theorem 1 gives

1997 191



ADVANCED PROBLEMS AND SOLUTIONS

Nn+k+1 .
Fau)= 2" )& exptiary)
k=0

which implies the stated equation by separating the real part. Q.E.D.

Now we are able to prove the proposer's equation. Using P,,, = F,,,(2) and cos(7#/4) =
1/+/2, Theorem 2 gives

pen(n+k+1
Fn=2 Z( 2% +1 )A3k—2n7 ®)
k=0
where A:=2/"2cos(jz/4) for all integers /. Using the addition theorem of the cosine, we easily
find that, for all integers 7,

Ay = (CD'2%, Ay = (D27, A4y =0, Ay = (1127,
or, in a more compact form,
j(—l}“f“)’”z[ﬂzi if j#2 (mod4),

A = 6
‘ [O, otherwise. ©

Observing that [(3% —2n)/2]=[3k / 2]—n, we see that (5) and (6) prove the stated equation with
n+1 instead of n.

Reference

1. Ryshik & Gradstein. Tafeln Y11/ Tables. Betlin: VEB Deutscher Verlag der Wissenschaf-
ten, 1963.

Also solved by P. Bruckman

Editorial Note: The editor wishes to acknowledge that H.-J. Seiffert also solved H-504 and
H-505.
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