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INTRODUCTION 

In the analysis of some physical structures, the possibility of modeling them with an electrical 
circuit is particularly important because it allows the determination of the characteristic behavior 
by means of a simple circuital analysis. Moreover, it is also interesting to have a different method 
of measurement evaluation, comparable with the "direct" one, which sometimes either is not 
simple or requires the use of computer programs which on some occasions do not go into conver-
gence. Finally, it can make a contribution to the mathematical interest in testing of network soft-
ware algorithms for solving linear equation systems. 

In this article, a symmetrical ladder network is used as a model for the simulation of electrical 
power lines. Fibonacci and Lucas numbers come out from the analysis of the power distribution 
among the users. The electrical characteristics of the ladder network have also been determined 
in a closed form using a theory previously developed by the author [1]. 

1. MODELING OF A POWER ELECTRIC LINE 

Let us consider a high voltage electric line, supplied by the two sides, which gives power to 
users distributed along the line, as in Figure 1. 

V. 0 
user 1 

0 
user n 

Vr 

FIGURE 1. The Electrical Power Line Supplied by Two Sides 

A ladder structure (Fig. 2) can be used as a discrete electrical model of the power line. For 
the sake of simplicity, we consider n users who have equal consumption, represented by n equal 
vertical impedances Z2, placed at equidistant points characterized by equal horizontal impedances 

1997] 149 



THE APPEARANCE OF FIBONACCI AND LUCAS NUMBERS IN THE SIMULATION OF ELECTRICAL POWER LINES 

V. t 

0 

\ 

Z1 

I- 1 

1 i 

1 Z2 

h 

k 

Z1 

f 

h2[ 

X . . 

Z2 

n -1 
21 

n 
Z1 

Z2 

n + 

c 

FIGURE 2, Ladder Network as a Model of the Power Line 

2. ANALYSIS OF THE LADDER NETWORK 

In order to analyze the network of Figure 2, we can use the superimpositlon of the effects in 
the networks of Figures 3 and 4. The analysis of these networks can be done starting from the 
study of the network of Figure 5, by adding a "load11 impedance. 
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FIGURE 3, Ladder Network Supplied by VA 

Z1 Z1 

72 12 

Z1 
n l 1 n+1 

O 

FIGURE 4. Ladder Network Supplied by VB 
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FIGURE 5. Ladder Network with n Identical Cells 
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In [1] a new fast method for the ladder network characterization in Figure 5 was presented; 
by using this method, all the electrical parameters of a ladder network formed by n identical cells 
can be written directly by means of both a parameter that characterizes the single cell [the "cell 
factor11 K(s) = Zx(s) / Z2(s)} and the polynomials in K whose coefficients are the entries of two 
numerical triangles, named DFF [3] and DFFz [4], here reported: 
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The mathematical properties of triangles and polynomials have been presented in [2]. Let us 
call b„ and B„ the polynomials whose coefficients are the entries of DFF and DFFz triangles, 
respectively. These polynomials coincide with the polynomials defined by Morgan-Voyce and 
then investigated by Swamy [7] and Lahr [5] and [6]. 

All the electrical characteristics of the network represented in Figure 5 can be expressed 
directly in a closed form by means of these polynomials if all the cells are equal. 

The networks drawn in Figures 3 and 4 are very similar to that of Figure 5. The only differ-
ence is in the fact that the last cell of the Figure 5 network has a "load" impedance of infinite 
value. It is possible to write the electrical expressions for the Figure 3 and Figure 4 networks as 
simply as for the Figure 5 ones and also in closed form. 

For the Figure 3 network, we have (see [5], p. 275) that the transfer function is given by 
V 1 
VA Bn(K)> 

while the voltage at the generical Xth node is given by 

•D«(A) 

(1) 

(2) 

with B_r(K) = 0. 
The voltage behavior for the network of Figure 4 is symmetrical. For that reason, we can 

write 

W ^ B T l i ( 0 < X < ^ + 1). (3) 

By the application of the superimposition of the effects, we can write, for the network repre-
sented in Figure 2, the following expression for the node voltages: 

VX(K) = V>(K) + V>'(K) = VA Bn(K) B Bn{K) 
(0<x<n + l). (4) 
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Denoting by Ixl and Ix2 the currents flowing into the Xth cell horizontal and vertical imped-
ances, respectively, we can write similar expressions, using the following property of Morgan-
Voyce polynomials, bx = Bx-Bx_l (see [1], [5]-[7]): 

L a f f l x v K-iJK) 
Bn(K) +vR 

J-vO — _ — 
1 

Ax2 Z2 Z2 

B„_X(K) B^jK) 
B„(K) B B„(K) 

B„(K) 

(1 < x < n). 

( I < x < « + 1); (5) 

(6) 

Let us now consider the case of odd n, for which the middle point exists for the voltage and 
the vertical current and is defined for x = m = (n +1) / 2. In this point, from (4), we can write 

A, 

In the middle vertical impedance, we also have 
1 

I ml (vA + vB)-
B, '(n-l)/2 

B. 

(7) 

(8) 

In the case of even n, we can reason analogously by considering the middle horizontal 
current, whose value is given by 

im.=^(-vA + v B ) ^ (9) 
^ 1 ~n 

being x = m = (n + 2)/ 2, while expressions (4)-(6) are always valid. 
We are mainly interested in determining the power dissipated in the vertical impedances 

(because only these have a physical meaning), which is given by the voltage-current product: 

(l<x<n); (10) 1 
^x2 ~~^~ 

L2 

y Bn-xJK) , y Bx-l(K) 
. A Bn(K) B Bn(K) 

Pm2-v-(vA+vBy 
Bt 

12 
\n-V)l2 (n odd). ( i i ) 

The Fibonacci and Lucas numbers appear in the case of K = l, which corresponds to 
Zj = Z2 = R. In this case, Bx = F2x+2 and hx = F2x+1. Consequently, we have 

V =VA 
F2(n+l-x) v F2x 

- 2(w+l) 2(«+l) 

Vm = (VA + V B ) ^ = ( V A + V B ) - i -
^2«+2 Ai+1 

i.,=-xxl R 
_ytV»l+VpJ^zL 

[ 2(w+l) !2(*+l) 

( 0 < x < f i + l), 

(w odd), 

(l<x<w'+l), 

(12) 

(13) 

(14) 
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Ax2 R K 2(n+l) 2(«+l) 

I-!4«t,')r 'n+l 

I m 2 = ^ ( V A + V B ) I i 

from which: 

P x 2 ~ i ? 

'n+l 

V A ^ ± ^ + V B ^ -
i 2 

2(77+1) 'K 2(n+l) 

Pm2=^(V A +V B )-
Hrc+l 

( 1 < X < A ? ) , 

(w even), 

(w odd), 

( l < x < « ) ; 

(n odd). 

(15) 

(16) 

(17) 

(18) 

(19) 

The last two relations show that the power consumption of the users is also a function of the 
Fibonacci and Lucas numbers. 

3, EXAMPLE 

Let us consider the power dissipation in the vertical impedances in the case of n = 3, shown 
in Figure 6 below. -1 71 j 1 z 1 
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FIGURE 6e Example 

In the generical case of different values between the horizontal and vertical impedances, we 
have, from (9): 

P x 2~z, 
v B^jK) | y B^Kl 

B3(K) B3(K) 
( l < x < 3 ) , (20) 

that is, 

^2 
A 5 3 (£) B !*,(*) 

p22 = ̂ [ v A + v B r 
B3(K) 

l 2 

= ^ [ V A + VB] 

V ^ ^ + ^ + Sj + Vj 
A : 3 + 6 £ 2 + I O £ + 4 

K + 2 
K3 + 6K2 + lOK + 4 

(21) 

P32 = Vn 
B2{K) B0(K) 
B3(K) A 5 , (*) 

VB(K2+4K + 3) + VA 

K3 + 6K2 + lOK + 4 
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In the particular case of Zl = Z2 = R, we have 

from which: 

P x 2 " i ? V, 
Fg_2x(K) F2x(K) 

F,(K) B Fg(K) 
( l < x < 3 ) , 

P12=[8VA + VB]2/441R, 
P2 2=[VA-fVB]2 /49R, 
P3 2=[VB + 8VA]2/441K. 

(22) 

(23) 

4. PARTICULAR SUPPLY VALUES 

In the analysis of the symmetrical ladder network, which models the power electrical line, we 
can consider some particular cases for the values of VB and VA. 

1) If VB = VA > 0, the network is completely symmetrical and the current flows as in the 
direction, for example, indicated in Figure 6, if n is odd. When n is even, in the middle horizontal 
impedance, the current is zero. 

2) If VA = -V B , and only from the mathematical point of view, only the case n odd is inter-
esting. In this case, in the middle point, all the electrical characteristics (voltage, vertical current 
and power) are zero. 

3) In the case VB = VA 4- AV, where AV can be positive or negative and AV « VA? VB, we 
have a slightly unbalanced situation and, as a consequence, there is a small difference in the elec-
trical parameter values. This is a real case and the computation can be of practical importance: if 
one of the supplies does not have enough power (owing to a lack of power), the other one can 
provide it. We can write: 

V = VA
 B»-*+B*-i +AV^E=L; AV = A V - ^ (l<x<n) 

A A A, 
and 

so that 

1x2=" 
VA

 Bn-x + Bx-l + AV^i 
B„ B„ 

AIV, = 4 - A V ^ (l<x<n), Lx2 

APx2 = AVxAIx 2=^-AV2 

z2 

which, in the case of Zx-Z2- R, is equal to 

A l 2 
x-1 

Bm 

Bm 

(l<x<n) 

AR„=4AV2 
rx2 R 

[2x 

and, in the middle point, for n odd, is equal to 

APm = ^ A V 2 

[2«+2 J 

l 2 

Hn+1. 

(24) 

(25) 

(26) 

(27) 

(28) 
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This means that the power variation is strongly dependent on the number of cells n (i.e., the 
number of the users) upon whom the line is modeled and is also a function of Fibonacci and Lucas 
numbers. 

For example, if n = 3, for a variation of 1%, we have that 

R-APm=2.041//W-Q (29) 
while, for a variation of 10%, we have that 

R-APm = 0.204mW-O, (30) 

where, in the case of 10 cells, we have, for AV = 1%, 

R-APm = 252nW-Q, (31) 

and,forAV = 10%, 
R-APm = 025/iW-Q. (32) 

CONCLUSION 

A symmetrical ladder network with a high number of cells can be considered as a good model 
for the investigation of the behavior of an electrical power line. In the particular case of equal 
impedances, the electrical characteristics can be written as a function of Fibonacci and Lucas 
numbers. 
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