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1. INTRODUCTION 

In the notation of Horadam [2], write 

Wn = Wn(aMp,q), 
so that 

Wn=pWn^-qWn_2, W, = a,Wx=b, n>2. (1.1) 

If a and /?, assumed distinct, are the roots of X2 - pX + q = 0, we have the Binet form [2]: 

Wn = Aa" + Bp\ (1.2) 

where ^ = ̂ f a n d 5 = ^ . 
The sequence {Wn} has been studied in the recent papers of Melham and Shannon [4], [5]. 

The purpose of this article is to establish some new identities involving Wn by using the method of 
Carlitz and Ferns [1]. 

Throughout this paper, the symbol (A) is defined by (A) = .,., "_;. .,,. 

2. THE MAIN RESULTS 

Carlitz and Ferns [1] have given a large number of interesting Fibonacci and Lucas identities. 
By adapting their method to the sequence {Wn}, we have obtained the following results. 

Theorem, 2.1: 

j=0 
w-i(y)(- irv^- y ^. (2.i) 

Lemma: Let M = a or/?, then 
(i) -pq + (p2-q)u = u3, (2.2) 

(ii) -q3+pq2u + u6 = (p2-2q)u4, (2.3) 
(iii) -q5+pq4u + ul0 = (p4-4p2q + 2q2)u6, (2.4) 
(iv) -q9+pq*u + uls = Au10, (2.5) 
where A = / - Sp6q + 20p4q2 -16p2q3 + 2q4. 

Theorem 2.2: 
ip2-q)Wk+x~pqWk = Wk+3, (2.6) 

-q3Wk +pq2Wk+l + Wk+6 = {p2-2q)WM, (2.7) 
-q5Wk +pq4Wk+l + Wk+l0 = (p4-4p2q + 2q2)Wk+6, (2.8) 

-q9Wk+pq*Wk+l + Wk+n = AWk+l0. (2.9) 
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Theorem 2.3: 

i+J+s--

Theorem 2.4: 
wn+k=d>q2r 

Theorem 2.5: 

Theorem 2.6: 

w3n+k= i ( ^ V i y v ^ y ^ * , (2.io) 

wn+k = (-qyn S fz"l(-i)V2y+V^+y+,- (2.ii) 
i+J+s=n ^ ' J ' 

Wn+k=(pq2r X {i
ni)<rW(p2-2qyW4l«iJ+k, (2.12) 

W4n+k=(p2-2qT" I ( ^ l ^ W ^ X ^ , (2-13) 

» U = I f/"l(-l)VV,+2;(^2-2?)W4/+y+fc. (2.14) 
i+j+s=n^ ' ' 

^*=(w 4 r s f/"l(-iy^(/-4A+2?
2)'^+10;.+fcJ (2.i5) 

W6n+k=(p4-4p2q + 2q2y" I (^VoV^fW*, (216) 

*Io«* = I f / " / l ( - l ) ^ V J + 4 / ( / - 4 A + 2^)'^+y+fc. (2.17) 

Wn+k=(pqZT" S f/"-l(-l)V'A'»I0(+18/+t, (2.18) 

»?<*•* = ** I f A - l c - O V ^ X . ^ , (219) 
i+j+s=n \ ' J S 

WlSn+k= I (^(-lyp^M^^. (2.20) 

3. THE PROOFS OF THE MAIN RESULTS 

Since a and J3 are roots of A2 - /?2 + q = 0, then 

a2 = pa-q, (3.1) 
P2=pf3-q. (3.2) 

Now, by the binomial theorem, we have 

a2" = l ( " ) ( - i r V ^ - V , (3.3) 

/p"=i,(j)(-irJp'<rJfiJ. (3.4) 
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Theorem 2.1 follows if we multiply both sides of (3.3) and (3.4) by ak and/?*, respectively, and 
use the Binet form (1.2). 

The Lemma can be proved by using (3.1) and (3.2). We prove only (2.3) since the proofs of 
(2.2), (2.4), and (2.5) are similar. 

Proof of (2.3): Using (3.1) and (3.2), we have 

-q3 + pq2u + u6 = q2(pu -q) + u4(pu - q) 
= q2u2 + pu5 - qu4 - q2u2 + pu3(pu - q) - qu4 

= (p2 - q)u4 + q2u2 - pqu3 = (p2 - q)u4 - qu2 (pu -q) = (p2 - 2q)u4. 

This completes the proof of (2.3). 

Theorem 2.2 can be proved by using the results of the Lemma and proceeding in the same 
manner as the proof of Theorem 2.1. 

The proofs of Theorems 2.3-2.6 are similar. Therefore, we prove only Theorem 2.4. 
Proof of Theorem 2.4: By using (2.3) and the multinomial theorem, we have 

i+j+s-n V ' ^ / 

i+j+s 

If we multiply both sides in the preceding identities by uk and use the Binet form (1.2), we obtain 
(2.12), (2.13), and (2.14), respectively. This completes the proof of Theorem 2.4. 

4. SOME CONGRUENCE PROPERTIES 

From (2.12), (2.15), and (2.18), by using the decomposition 

1 = 1 + 1 . 
i+J+s=n i+j+s=n i+j+s=n 

z=0 i*0 
we obtain 

Theorem 4.1: 
Pnq2nWn+k-ii§{-\yq'"-ZiW6j+k^ (mod(p2-2q)), (4.1) 

P"g4"K+k-t(j)(-iy^'iJWioJ+^0 (mod(p<-4p2q + 2q2)), (4.2) 

P y X + , - l ( " ) ( - i y ^ - 9 ; ^ 8 y + f c - 0 (mod A). (4.3) 

From (2.14), (2.17), and (2.20), by also using the above decomposition and Theorem 2.1, we 
get the following result: 
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Theorem 4.2: 
W6n+k - {-l)nq2nW2n+k - 0 (mod(/?2 - 2q% (4.4) 

WlQn+k-{-iyq*nW2ri+k^0 (mod(/-4/?V2<72)) , (4.5) 

» W * ~ i-WnW2n+k - 0 (mod A). (4.6) 

5. A REMARK 

Some of the results in this paper are not as "practical" as others. For example, if we put 
n = 10 and k = 0 in (2.13), then we seek to find W40. However, on the right-hand side, we need to 
know W6, Wl2, Wls,..., W60 (and many other terms) in order to find W4Q. In contrast, (2.14) is more 
practical since, in order to find W60, we need to know the value of terms whose subscripts are 
much less than 60. 
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N E W E D I T O R 

On August 31, 1998, after eighteen years of continuous service, the current editor of The 
Fibonacci Quarterly will retire. He will be replaced by: 

Professor Curtis Cooper 
Department of Mathematics and Computer Science 
Central Missouri State University 
Warrensburg, MO 64093-5045 
e-mail: ccooper@cmsuvmb.cmsu.edu 

During the interim, Professor Cooper will serve as the coeditor. 
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