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PROBLEMS PROPOSES IN THIS ISSUE 

H-536 Proposed by Paul S« Bruckman? Highwood, IL 
Given an odd prime/?, integers n and r with n > 1, let m -1\\n] — 1, 

p~\ rp p-l T 
V — 'V J7k . nk+r J1 —\^ pk m ^nk+r 
°n,r,p La m ° r. ? n,r,p Zu rn JL 

k=l K J f c = l K, • 

Prove the following congruences: 

ppp -FpF +F 
(a) S^m " mp+r

 p
m "p+r r (modp); 

ppj -FpI +L 
(b) Tn^"Lmp+r Y"P+r («*>d/0-

H-537 Proposed by Stanley Rahinowitz? Westford, MA 
Let (w„) be any sequence satisfying the recurrence 

Let e = w0w2 - wj and assume e * 0 and Q^O. 
Computer experiments suggest the following formula, where A is an integer larger than 1: 

k 

Wi kn 
i=0 

where 
k-2 

e J=A v / 

^=s(*;2)(-G-'oy<2-Vy 

Prove or disprove this conjecture. 

H-538 Proposed by Paul S* Bruckman, Highwood, IL 
Define the sequence of integers (Bk)k>0 by the generating function: 
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(l-xy\l + xyi = ^ B k ^ , \x\<l (see[l]). 
k>0 Kl 

Show that 

SS'-(2^2)T = T-I1^"-w h e r e" = 1 + ^ 
Reference 
1. P. S. Bruckman. "An Interesting Sequence of Numbers Derived from Various Generating 

Functions." The Fibonacci Quarterly 10.2 (1972):169-81. 

SOLUTIONS 
Find Your Identity 

H-518 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 34, no. 5, November 1996) 

Define the Fibonacci polynomials by F0(x) = 0, F^x) = 1, Fn(x) - xFn_x{x) + Fn_2(x), for n > 2. 
Show that, for all complex numbers x mdy and all positive integers n, 

£(„?* W*oo=(*-Wf±4 (1) 
As special cases of (1), obtain the following identities: 

5 1 ( - l ) R 2 -* + i y < 4 V 2 l = ^ , Z ^ 1 ; (2) 
k=0 V / k= 

5\2n-k-l 

I(-i)t(2-i+2)/5](t)=5"^; 
A;=0 

5\2n-k 

(3) 

X L - " * H ^ - 2"F„(6), where Pk = Fk{2) is the k* Pell number; (4) 

S („2_ * V* (*m* +1) = ^n(*2+*+4); (5) 

| ( - l ) - ( „ 2 " , ) F , W F 1 ( 4 / , ) = i ^ [ ^ ' , « 0 ; (6) 

iL-S-iy^+i« = ̂ -̂ (4/x). (9) 
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The latter equation is the one given in H-500. Hint: Deduce (1) from the main identity of H-492. 

Solution by the proposer 
Proof of (1): From H-492, we know that 

[H/2]/- \ 

I I \Fn-2k(x)Fn-2k(y) = 2"-lFn(xy I z), 

where z ~ y x2 + y2 + 4 . Replacing n by In and substituting k by n - k gives 

i(n
2"k)F2k(x)F2k(y) = z2"-1F2„(xy/z). 

Using F2k(x) = il-kxFk(i{x2 + 2)), i = V R ) , we get 

^ I ( - l ) i + f A W * 2 + 2 M ( / ( / +2)) = il-"xyz^FM(xy/z)2
 + 2)). 

Now7, we replace x by i<j2+ix and j ; by i\/2-jy, so that z becomes ^/i(y - x) . Then, using 
(-l)^+1J^.(-j/) = i^(y) and some elementary calculations, we obtain (1). 

Proof of (2) and (3): Let x = ia and j = i/3. In [1] it was shown that 

s v w , m J(-l)Ki+2)/51 if51*. 

so that by (1), 

Replacing n by In-1, using F2n_l(-iS) = (-1)""1 L ^ , and reindexing * by 2w-A - 1 , we 
find (2). 

Replacing n by 2w, using iF2n{-i45) = ( - l ) " " 1 ^ ^ , and substituting A by 2w - £ gives (3). 

Proof of (4): This follows from (1) by taking x = 4, j ; = 2, and using i^(4) = F3k/2. 

Proof of (5): Take^ = x + 1. We note the particular case, 

obtained when x = 1. 
Proof of (6): Take j / = - 4 / x , use ^ ( - 4 / x ) = (-l)*+1^(4/x) and F„(0) = ( l - ( - l ) n ) / 2 . 

Then, with x = 1, we obtain 

ZC-W^VA=(i-c-ir)^-1. 
k=o V / 

Proof of (7): Takej = x. 
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Proof of (8): Take y = -x and use 

(2x)»-lFn 
4-x n - l i , 

nl 2x 
2\ 2\n 4"-(-x2} 

4 + r ,2 

which easily follows from the well-known Binet form of the Fibonacci polynomials. With x - 2, 
we get 

i(-i)4+teV,2=o-(-ir)22"-3. 
k=o V / 

Proof of (9): Takej> = 0. 

Reference 
1. N. Jensen. "Solution of H-492." The Fibonacci Quarterly 34.1 (1996):91-96. 

Also solved by P. Bruckman. 

Squares among US 

H-520 Proposed by Andrej Dujella, University of Zagreb, Croatia 
(Vol 34, no. 5, November 1996) 

Let n be an integer. Prove that there exists an infinite set D c: N with the property that, fox 
all c, d eD, the integer cd + n is not squarefree. 

Solution by David Terr, University of California at Berkeley, CA 
We claim that, for all n, an arithmetic sequence 

D = {kp2+a\keN} 
satisfying the above property exists, where/? is a prime and a <p212 is a nonnegative integer. If 
41/i, we may choose p - 2 and a - 0. Ifn = 3 (mod 4), we may choose p-2 and a = 1. Finally, 
if «= 1 or 2 (mod 4), we choose/? to be an odd prime such that (=jr) =1 and find a nonnegative 
integer a < p212 such that a2 = -n(p2). By Hensel's lemma, such an a exists and is unique. 

To see that D satisfies the above property, first consider the case in which 4\n. In this case, 
D = {4k\k G N } , so if c,d eZ), we have c- 4k and rf = 4/ for some &, / G N , whence o/+w = 
I6kl+n, which is divisible by 4 and, thus, not squarefree. 

Next, consider the case in which n = 3 (mod 4). In this case, D = {4& + l|& G N } , SO if 
c,d eD, we have c = 4£ + l and <i = 4/+l for some i , / e N , whence cd + n = I6kl+4(k + l) + 
1 +7i, which is again divisible by 4 and, thus, not squarefree. 

Finally, consider the case in which n = 1 or 2 (mod 4). In this case, D = {A/?2 +a | £ GN} for 
some odd prime/? and some nonnegative integer a <p212 such that p2\ (a2 + n). If c,d eD, we 
have c = kp2-\-a and d = Ip2 + a for some A , / G N , whence cd+n = klp4 +a(k + l)p2 +a2 +/?, 
which is divisible by /?2 and, thus, not squarefree. D 

The following table lists the values of/? and a found by this method for \n\ < 10. 
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n 
-10 
- 9 
-8 
- 7 
- 6 
- 5 
_4 
- 3 
- 2 
-1 

P 
3 
2 
2 
3 
5 
2 
2 

11 
7 
2 

a 
1 
1 
0 
4 
9 
1 
0 

27 
10 

1 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

P 
2 
5 
3 
2 
2 
3 
5 
2 
2 
5 
7 

a 
0 
7 
4 
1 
0 
2 

12 
1 
0 
4 

23 

4̂feo solved by B. Beasley, P. Bruckman, and the proposer. 

Zeroing In 

H-521 Proposed by Paul S. Bruckman, Highland, IL 
(Vol 35, no. 1, February 1997) 

Let p denote any zero of the Riemann Zeta Function £(z) lying in the strip 

5 -{zeC:0<Re(z )< l} . 

Prove the following: 

(2) — p~ l = 1H— y -~\o%An, where y is Euler's Constant. 
peS 2 2 

Solution by Kee-Wai Lau, Hong Kong 
Proof of (1): It is well known that the zeros are in conjugate pairs. They either lie on 

\ or occur in pairs symmetrical about this line. If Rep = y, we have 

1 . 1 

line Re z • 

P - i + ' P~\ 
= 0. 

If Rep* j , then p is a zero if and only if p, \-p, and \-p are zeros, and we have 

1 - + — 
1 1 1 0. • 

P - \ P-i 0 - P ) - 2 0 - P ) - 2 

Proof of (2): It is known (see [1], Formula 2.12.7, p. 31) that 

«z) r - 1 0 g 2 ; r 2 r *-l 2r((z/2) + l)+yz-/pJ a 
where F is the Gamma function. 
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It is also known (see [1], p. 20) that 

C(l~z) 2 2 T(z) £(z) ( ^ 

By substituting z = ̂  into (*) and (* *) and making use of (1) we obtain, after some algebra, 

f^p 2T(5/4) 2V
 2

l0gZ7t+4 2 IX1/2) -

Since 
rxi/2) 01 n 
— - L = — y— 2102 2 
r(i/2) r g ' 

in order to prove (2) it remains to show that 
F(5/4) „ - * • . 

In fact, by substituting z - j into the duplication formula 

P(2z)= lP(r) lP(z + (l/2)) 
r(2z) 2 r(z) 2 r(z+(i/2)) s 

and into the reflection formula 
P ( l - z ) P(z) J 

r(i-z) r(z) 
we easily obtain 

r 'Q/4)= 31 2_JT 
r(i/4) r 8 2 ' 

The result for r^'2 now follows by substituting z - \ into the recurrence formula 

P(z + l ) ^ P ( z ) 1 n 

P(z + 1) F(z) z ' 

This completes the solution of the problem. 
Reference 
1. E. C. Titchmarch. The Theory of the Riemann Zeta-Function. 2nd ed. Oxford: Clarendon 

Press, 1986. 
Also solved by. -J. Seiffert and the proposer. 

96 [FEB. 


