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1. INTRODUCTION 

Let G = (Gw) be a strictly increasing sequence of positive integers with Gl = l. Then every 
nonnegative integer n has a digital expansion 

i>\ 

with respect to basis G, where the digits si - si{ji) > 0 are integers. This digital expansion is 
unique, when one assumes that the digits et are chosen in such a way that the digital sum Z7>! si 

is as small as possible; in this case, we will call the digital expansion a proper digital expansion. 
It is easy to see that the following algorithm provides this expansion. 

1. For n = 0, we have £,-(«) = 0 for every i > 1. 
2. If Gj <n< Gj+l and n' = n-Gj has the proper expansion n' = Zz>isffjt, then the expan-

sion of n = Sz->i etGt is given by si = s\ for i & j and by Sj =e'. + l. 

The most prominent digital expansions are related to linear recurring sequences G = (Gn), e.g., 
the binary (resp. the #-ary) expansion relies on Gn = 2n~l (resp. on G„ = qn~l). If Gn are the Fibo-
nacci numbers, i.e., Gn = Fn+l, then we obtain the Zeckendorf expansion. 

For each digital expansion with respect to a basis G, we can define a partial order in a quite 
natural way. We will say a<Gh if and only if et(a) < st{b) for every i > 1. It is well known that 
for every partial order there is a Mobius function (see [10], [13]). Let sG(n) denote the sum of 
digits of n. Then it will turn out that the Mobius function juG of a digital expansion to a basis G is 
given by juG(n) = (~l)%(w) if 

maXŷ j si{n) < 1 and by juG(n) — 0 otherwise. 
If G is a proper linear recurring sequence and if the initial conditions of G are properly chosen 

(see Section 3), then 
n=0 

is either bounded or 

MG(N) = Sa(N):=Z(-iyaW, 

which we will see from calculating the Mobius function in Section 2. (We always define empty 
sums to be zero, i.e., MG(N) = SG(N) := 0 for N < 0.) 

* This work was supported by the Austrian" Science Foundation, grant P10187-PHY. This paper, presented at the 
Seventh International Research Conference held in Graz, Austria, in July 1996, was scheduled to appear in the 
Conference Proceedings. However, due to limitations placed by the publisher on the number of pages allowed for 
the Proceedings, we are publishing the article in this issue of The Fibonacci Quarterly to assure its presentation to 
the widest possible number of readers in the mathematics community. 
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In Section 3 we will formulate conditions for G, under which we will be able to derive for-
mulas for SG(N). We will also obtain a recursive formula for the generating function of SG(Gn), 
which we will analyze in Section 4 in order to obtain asymptotic information about SG(N). 

Our main interest lies in the distribution of the SG(N) (resp. MG(N)) when 0<N <m for 
large m. This means that we count the number of times SG(N) takes a certain value k when 
0 < N < m: let dm(k): = | {0 < N < m: SG(N) = k}\ be this number and let Xm be a random variable 
with probability distribution f(Xm = k) = dm(k)/m. Then we are interested in the asymptotic dis-
tribution of Xm for m-> oo. Depending on the nature of the recurrence relation for G, we will 
observe significantly different behavior of Xm. First, we distinguish two cases: 

1. either SG(Gn) is bounded for all initial conditions of G (Section 4.1), or 
2. there are initial conditions of G such that SG(Gn) is unbounded (Section 4.2). 

Since we can establish a linear recurrence relation for the SG(Gn), the first case is equivalent 
to the assumption that the characteristic polynomial of this recursion is a product of some zr~v 

( r - v > 0 ) and certain different cyclotomic polynomials. In this case, we can derive asymptotic 
formulas for EXW and VXm, provided that the sequence G satisfies a certain technical condition. 
Our main result (Theorem 2) says that, in the case of unbounded variance, Xm satisfies a central 
limit theorem. (Note that there are sequences G for which VXm is bounded, e.g., Gn = 2W-1.) 

2. THE MOBIUS FUNCTION OF A DIGITAL EXPANSION 

Let G = (G„) be a strictly increasing sequence of integers with Gx = 1. As mentioned above, 
every nonnegative integer n has a digital expansion n - Z/^i^/Gy with nonnegative integral digits 
sr It is called proper digital expansion for n if the digital sum Zz>i st is as small as possible. 

Lemma 1: L e t T i ^ Z ^ ^ G , be a proper digital expansion for n. Then any sum of the form 
2/>i^z'Q with integral digits e\, i > 1, satisfying 0< s\ < st is a proper digital representation for 
some«'<«. 

Proof: First, note that it follows from the algorithm stated in the Introduction that any digital 
expansion of the form nj = S/=i £iGi < n is a proper one. 

Next, we will use induction on the digital sum 5' = Z/>i^J, where 0<8f
i<sr Obviously, 

there is nothing to show if $' = 0. 
Now suppose that n' - Zz>i e\Gt has digital sum s'. There exists j > 1 such that s'j > 0 and 

s\ - 0 for i> j . Then Gj <n' <nj <Gj+l. Therefore, n" = n'-Gj can be represented by n" = 
Z/=i£,"Gz with s'j-s'j-I and s'(-s\ for i*j. Since ()<£,"<£; and its digital sum satisfies 
E/^i^r= s'-l<s', this expansion for n" is proper. Consequently, Zz>i£-G7 is a proper expan-
sion for n'. D 

Now we introduce the Mobius functions ju(x, y) of a locally finite partial order < on a set X, 
i.e., all intervals [x, y] = {u e X: x < u < y) are finite (see [10], [13]). Any function f:X2-J»C 
that satisfies f(x, y) = 0 for x & y will be called an arithmetical function. The convolution / * g 
of two arithmetical functions/, g is given by 

x<u<y 
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Obviously 8, defined by S(x, y) = 1 for x = y and S(x, y) = 0 otherwise, is the unit element of * . 
Furthermore, if f(x, x)^0 for every XGX, then there always exists an inverse arithmetical 
function f~l satisfying f~l*f = S. The Mobius function JU is defined as the inverse function of 
C, given by g(x, y) = 1 if x < y and by £(x, y)=0 otherwise. Especially, if g = £* f, then/can 
be recovered by / = ju*g. (We intend to use this Mobius function in future work for sieve 
methods in connection with specific problems of digital expansions.) 

Theorem 1: Let <G be the partial order on the nonnegative integers induced by the digital expan-
sion with respect to a strictly increasing sequence of integers G = (G„) and suppose m = E;>i s\ Gt 

and /2 = Z/>i£"Q are proper digital expansions of nonnegative integers m, n with m<G n, i.e., 
e\ < e" for all /'. Then 

(0 if there is an / with e"- e\ > 1, 

(-ifixto-'i) otherwise. 
Proof: Since there is a natural bijection between [m, n] = {d eN0|jw <G d <G n} and [0, n-m\ 

we have ju(m, n) = ju(0, n-m) if m <G n. (For m£Gn,wQ have ju(m, n) = 0.) 
Therefore, we will calculate only ju(0,n). From the definition of /j(x,y), it is clear that 

ju(0,0)=l and that 
]T ju(0,d) = 0 forn>0. 

0<Gd<Gn 

Assume for a moment that €"< 1 for all i. We show that //(0, ZyljQ,) = (~lf DY induction on 
the digital sum s = k. Clearly, for s = 0, we have ju(09 0) = 1 = (-1)°. Now assume that s>\ and 
that //(0, Z%1 Gt.) = (-1)* for all k < s. Then 

0 - X M(09d) 

-(//(o,o))+(//(o,a0)+//(o,a1)+---+Mo,aJ_1)) 
( ( s~i ^ 

+ ( / I ( 0 , G , 0 + G O H V K O , G ^ 

=i+(;>-i>l+(s)("1)2+•••+G- Oc-1)*-1-^^ 2 ^ ) 
Because of S}=0(/)(-l); = 0, it follows that ju(0, S J I Q Q , ) = (-1)', which proves the theorem in 
this special case. 

Nov/ suppose that kGt with i > 1 and k > 1 is a proper digital expansion. Then 0 = ju(0,0) + 
ju(0, G,) + • • • +//(0, kGt). Notice that /i(0,0) +ju(0, Gf) = 0. Hence, it follows that ju(0,2Gt) = 
ju(0,3Gi) = - = ju(0,kGi) = 0. 

Next, we show by induction on the digital sum s(ri) = Z;>i £" that /i(0, w) = 0 whenever there 
is an i with £'/> 1. We must start with s(n) = 2 because e"> 1 cannot be satisfied when s(ri) < 2. 
Suppose that s(n) = 2 and that there is some i with e"> 1. Then m = 2G,- and /i(0, m) = 0. Now 
assume the assertion holds for all natural numbers / with s(l) <s(n) and assume there is ay with 
e'j>\. Then 
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-M(0,ri)= £ ju(0,d)= £ M(0,d)+ X f*M 
0<Gd<Gn Q^QdKQn^i-.s^d)^! 0< G d< G «,3i :* / (<0>l 

I M(P,d). 
Q<Gd<Gn,^i\Ei{d)<\ 

Define nx := Zz>imin(£", l)Gr Because of the existence of/with £">l, we have 0<nx <n and 

0<G^<Gw,V/:£'/(c?)<l Q<Gd<Gnx 

The right-hand side is, of course, zero, due to (2), which completes our proof. • 
Since juG(m,n) = juG(0,n-rn) (if m<Gn), it is sufficient to consider the restricted Mobius 

function juG(ri) = juG(Q, n). As mentioned above, the main topic of this paper is to discuss the 
partial sums 

MG(N) = N£MG(n)-
«=0 

Nevertheless, we will rather discuss the partial sums SG(N), see (1), which will be motivated by 
the following proposition. 

Proposition 1: Suppose that G„ >2Gn_l for all n>\. Then MG(N) is bounded by 1. On the 
other hand, if Gn < 2Gn__x for all n > 1, then 

MG(N) = SG(N):=Nf(-iyc(»\ 

where sG(n) denotes the digital sum sG(n) = Z,>i ex of the proper digital representation 

i>\ 

Proof: Due to Theorem 1, only those n with expansion coefficients 0 or 1 enter the sum. If 
Gn > 2Gn_l for all n > 1, then all the digital expansions Sz>i stGt with si G {0,1} are proper ones. 
Hence, MG(N) attains only the same values as in the binary case in which the corresponding sum 
is 0 or ±1. 

If Gn < 2Gn_l for all n > 1, then in all the proper digital expansions only the digits 0 and 1 can 
occur, and the assertion follows from Theorem 1 with m - 0. D 

Remark 1: We will see later that for all G considered here, (al + l)Gn_l >Gn > a^jn_Y holds for 
n > r; therefore, Gn < 2Gn_l for all n > 1 is equivalent to ax - 2 and r = 1 or ax = 1 when the initial 
conditions of G are properly chosen. But if aY > 2 or ax = 2 and r > 1, and if Gn > 2Gn_x holds for 
the initial values, then Proposition 1 applies and MG{N) is bounded. Because of this, we will 
investigate the function SG(N) rather than MG{N), keeping in mind that, in most cases, when 
MG(N) is of interest, both are the same. 

Remark 2: If Gn = 2"~\ then tn = (-l)^(w) is the Thue-Morse sequence [11]. Since t2n + t2n+l = 0, 
we have £G(2ft + l) = t2n = tn9 and we also have SG(2ri) = 0. Thus, it is not really interesting to 
study SG(N) in this case. 
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3. DIGITAL EXPANSIONS AND GENERATING FUNCTIONS 

From this point on we will consider only integral linear recurring sequences G = (Gn)n>x that 
satisfy assumptions 1-5 below (in Section 4.1 we will also need assumption 6): 

1. Gx = l and G„+x>Gn for n>\. 
2. Gn = S[=1 ciiGn_i for n > r with some integers at > 0. 
3. Gn_j > EJ=y+i @jGn-i for w > r and 1 < j < r. 
4. G satisfies no linear recursion with constant integer coefficients with a smaller degree. 
5. The characteristic polynomial zr - E[=1 atzr~l = Il[=1(^ - at) (of the above recursion) has only 

one real, positive, and simple root ax of maximal modulus. 
6. Let bt = (af mod2)(-l)ai+'"+a'-1 (a, mod2 = 0 if a;, is even and at mod2 = 1 otherwise). Then 

is a product of zr~v (r - v > 0) and different cyclotomic polynomials Q>kh(z) (kx<k2<--
< kk,\ all of them dividing zp -1 with some fixed p>r. Furthermore, none of the at and no 
quotient at I otj (i ^ j) is a p^ root of unity. 

Assumptions 1, 2, and 4 are natural. Therefore, only conditions 3, 5, and 6 need to be motivated. 
Assumption 3 is necessary to show that S{Gn) satisfies a linear recurrence; especially, it im-

plies (6) in Proposition 2. 
From assumption 5, we obtain Gn = (ial~l + 0{{axy)n) with some /? > 0 and 0 < y < 1. Note 

that assumptions 2 and 3 imply (ax + 1)G„_X ^Gn> afjn_x for n > r, which gives ax < ax < ax +1. 
Similarly, we get ax > at for all i. 

The first part of assumption 6 (concerning the cyclotomic factors) ensures that S(Gn) is 
bounded. The assumption that at and af I ay are not /7th roots of unity is frequently used in 
problems concerning digital expansions with respect to linear recurring sequences and avoids 
technical difficulties (see Lemma 2). 

Usually, assumptions 3 and 5 are replaced by the stronger condition ax > a2 > • • • > ar and 
certain assumptions on the initial values of G (see, e.g., [8]; in this case, the second part of 
assumption 6 is also satisfied). However, there are other interesting examples, e.g., ax =ar = 1, 
a2 = • •. = ar_x - 0, that satisfy the above assumptions and are not of the form ax > a2 > • • • > ar. 

From here on, let G = (Gn) be a fixed linear recurring sequence with assumptions 1-5. For 
notational convenience, we will omit the index G in the sequel. 

Proposition 2: Let ht = (a, mod 2)(-l)ai+'""K*-1 {at mod 2 = 0 if at is even and at mod 2 = 1 other-
wise). Then S(Gn) = SG(Gn) satisfies the linear recurrence 

S(G„) = X W ? „ - , ) for»>r. (2) 
1=1 

Furthermore, if n has the proper digital expansion n = Hl
J=l SJGJ, then 

( i \ i 
^ Z ^ =2(^mod2X-l)^1 +-"+ t f |5 ,(Gy). (3) 

V/=1 J /=! 
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Proof: We will first establish a set identity that holds for all nonnegative integers sjy regard-
less of whether Zy=i SJGJ is a proper digital expansion or not: 

O^aKpfiLpL i / 

j=\ \h=j+i 

} i */-i r / 
0 ^ < ^ y = U U Z*AGA+« 

J y=l i=0 IA=y+1 
iGj<a<(i + l)Gj\ (4) 

*,-i f / = U U Z^Gh\ + iGJ+a 0<a<G> 

where each union is disjoint. (Again, empty sums are set at zero.) 
Now set l = n-l, Sj =an-j for n-r<j<n and sj = 0 otherwise. Then one obtains for 

n > r, after interchanging i and 7 and shifting /'->/?-/', h-^n-h, 

{a 
n-\ at-\ 

0<a< I^Gy=UU I ^ + ^ + f l 0<a<G„ (5) 

From this we see that, for n > r, 
3,-1 r a,-l G ^ - l 

S(G„) = Z ( - i r ( a ) = Z Z Z {-\y^^ahG"-h+jG"-i+a) 

a=0 /'=! ;=0 a=0 

=t£lY1(-^*+/^"B=Z(-i)a:ti,,i^(GJ1_,)5;l(-i)/ 

= X(«, mod2X-l)(zfc,'fl*)5(GfM) = I W ^ , ) 
/ = 1 J = l 

with £> := (a, mod 2)(-l)a i+ '"+a'1. Note that assumption 3 from above ensures that 
n-i \ i-i 

V/P=I y A=I 

You only have to start with m = lL1h=\ahGn_h+jGn_i+a and apply the algorithms stated in the 
Introduction to deduce that sn_h{m) = ah, \<h<i and sn_^m) - j . (Of course, this procedure is 
standard in the study of such digital sequences (cf. [8], [9]). This proves equation (2). 

The proof of (3) is quite similar. If we set Zy=i epj =:m + slGl in (4), we get 

{a\0<a<m + £lGl}={J{iGl+a\0<a<Gl}u{elGl+a\0<a<m}. 

Let sfix +m = Zy=i SjGj be a proper digital expansion. Then it follows that 

(6) 

SjGi+m-l £/-l G/-1 m-l 

S(sfit +m) = XC-l)*1) = £ £(-i)*3r*0 + £(-i)^A+0) 
a=0 /=0 a=0 a=0 

£rl G,-l m-\ 

= K - i y ^(-l^H-iy,It(-l)Ka) = (elmod2)S(Gl)H-^s,S(m). 
/=0 ar=0 a=0 

(7) 
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Iterated use of equation (7) gives (3). D 

Corollary: Let dm(k) := |{0<a <m\S(a) = k}\ and Dm(z) the corresponding generating function 
ro-l 

A,(*)=5X(*)** = 2y(fl)- (8) 
keZ a=0 

Then DGn{z) (and DGn(z~1)) satisfy, for n > r, the relation 

DG (z) = Y y ^ t i ^ C ^ ^ (z{-i)a>+'"a>-*+J\ ( m 
7=1 j=Q 

Proof: Suppose n > r. An iterated use of (7) gives, for 1 < i < r, y < at, and m < G„„;, 
+ jG„_i+m) 

= (aj mod 2)<S,(G„_1) + (-1)°' (a2 mod 2),S'(G„_2) + • • • 
+ (-l)-.+-"^-2(a-_1mod2)5(G^+1) + (-l)fll+""f<'wC7mod2)5(GllW) 

= 2 w ^ ) + (-l)fl,+ " '̂-,0"mod2)S(G^^^^ 

Note that, for / = 1, we just obtain S(jGn_l +m) = (Jmod2)S(Gn_l) + (-iyS(m). Hence, by using 
(5) and (8), we get 

G„-l r q-lG^-l 
JJ / z \ _ y z % ) = y y y£zS(alG^.l + ---+al_lGn_M+jGn_i+m) 

m=0 j=\ y=o m=0 

i=l J=0 m=0 

i=i y=o 

4. ASYMPTOTIC ANALYSIS 

We distinguish two cases: either S(Gn) is bounded for all suitable initial conditions of G or it 
is not. The first case will be of special interest. It turns out that in this case the distribution of the 
values of S(N) approximates a normal distribution for all suitable initial conditions of G (see 
Theorem 2). 

4.1 Bounded S(Gm) 

Proposition 3: Suppose that S{Gn) is bounded. Then S(Gn) satisfies a linear recursion for n > N 
with some JST, whose characteristic polynomial is a product of different cyclotomic polynomials. 
Remark: This motivates the first part of assumption 6 in Section 3. 

Proof: We know that every S(m) is an integer and, therefore, can only attain a finite number 
of distinct values. So we see from (2) that S(Gn) must be periodic (in n) for n> N. Let/? > r be 
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some period of S(Gn) and assume n > N. Then S(Gn+p) - S(Gn) = 0, which implies that S(Gn) is 
a linear combination of powers of /7th roots of unity. Let m(z) be the product of all cyclotomic 
polynomials corresponding to those roots of unity which appear in the representation of S(Gn). 
Then S(Gn) satisfies the linear recurrence related to m(z), D 

Proposition 4: Suppose that S{Gn) is bounded. Then DG„(Z) (defined in (8)) and Don(z~l) 
satisfy, for n > TV, a homogeneous linear recurrence with (in n) constant coefficients af(z) that are 
analytic around z = 1 and satisfy at(z) = at(z~l). 

Proof: Let/? > r be a period of S(Gn). Then, by splitting (9) into four parts, we get 

/ = max(0,fc-r) 

k-\ 

i=k+p-r 

p-1 

/ = max(0,fc-r) i-k+p-r 

with 

*, / T \ - U SZh=\ ' 6 /»%-/»-(ai+ - +ak-i-i mod 2)m,) 
/k,i\Z)~nk-JZ 

„, /-A _ |T Jsfci"1 hf»k-h+(oi+ ••• +«*-/-imod2M-) 
Yk,p+i\Z)-nk-iZ 

bkJ\Z)-nk+p-iZ 

£k,P+i(z) = hk+p-i^ , 

where /^, := £(G7), 0 < A: < p and 0 </ < p and 

[ | { 0 < 7 < a / | j ^ a 1 + ..-+a/_1(2)}| f o r l < / < r , 
4 = 

5 = 

0 otherwise, 

| { 0 ^ y < f l i l 7 s a 1 + .-+fl i . 1 + l(2)}| f o r l < / < r , 
0 otherwise. 

In the case 1 < i < r, we can calculate 

A = a , + l 

(10) 

(11) 

for a, = ^ + • • •+a,_! (2) = 1 (2), 
otherwise, 

/ * - $ = &,: 
Furthermore, we define yp+Kp+i(z~l) = ykJ(z), yp+Ki{z-l) = yk>p+i{z), CP+k,P+i(z~x) = Ck,i{z)> 

( (DG(z),DG(z),...,DGn(z)y ) 

**Hi% JQ+sp 

y v ^O+sp^ 

Jl+spy 

-Jl+sp \ 
(»o^-^DG(z-^...,DG(z->)y 

Jp-\+sp 

•Jp-l+sp y 
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r(z) = (
r u 0 0 riAzA( (TkAzy)o<kj<p (rk,p+i(zy)o<k,i<P 

\Y p+k, p+i \z))o<k, i<p 

7 M = (ziM zu(z)l=((CkAz))o<k,i<P (Ck,P+i(z))o<k,i<P ) 
" |z2>1(z) z2j2(z)J {(Cp+kAz))o,k,«p (Cp+Kp+Mo^pf 

Then the identities d 2 » = du(2- ' ) , r „ ( z ) = ru(*-»), r21(z) = r ^ z " 1 ) , Z „ ( z ) = Zu(z-1) , 
and Z2 j(z) = Z u (z _ 1 ) hold and (10) becomes 

ds(z) = r(z)ds(z)+Z(z)ds_1(z), 

or, fortnally, 

di(z)-((I-r(z))-1Z(z))dJ_1(z). 

Since the quadratic matrix T(l) consists of four quadratic p x p -blocks that are lower triangle 
matrices with zero diagonal, it is an easy exercise to show that I -T( l ) is invertible. Hence, 
(I - T(z)) is invertible in a neighborhood of z = 1. 

Call P(Z)(/) •= det(/I- 0(z)) the characteristic polynomial of the matrix 

®(z):=(I-r(z))-lZ(z). 

Then, by the theorem of Cayley-Hamilton, P(Z)(0(z))=O. From this, we see that the sequence 
(DGi+ (z))s>o satisfies a linear homogeneous recursion. 

Finally, it follows from the definition of FandZ that P(z)(/) = P(z_i)(/), from which we see 
ihatai(z) = ai(z-1). D 

Let 4(ZX 1^/^2/7, denote the roots of the polynomial P(2)(/), where z varies in a suffi-
ciently small neighborhood of z = 1. Since ai(z-l) = ai(z), they satisfy 4(z _ 1) = 4( z ) - Further-
more, there exist functions Bkfi(z, s) that are polynomials in s such that 

A%+„(*) = 2 X / ( v M ( * ) ' . (12) 
7 

Since-Dbk+ (1) = Gfc+Jp ~/^af- 1(af )*, it might be expected that (locally around z-X) there exists 
a unique root Ax(z) (satisfying ^(1) = a{) of maximal modulus which is simple. The following 
lemma shows that this is true if assumption 6 in Section 3 holds. 

Lemma- 2: Suppose that assumptions 1-6 in Section 3 hold and let v:= max{l</ <r|£>- ^ 0 } . 
Then, with the above notation, the 2p roots of P(i)(/) are af, 1 < / < r, where au 1 < / < r, denote 
the roots of zr - YI^\ajZr~J, 0 with multiplicity 2p-r-v, and 1 with multiplicity v. 

Proof: From A?^(1) = G*+J, = I , / ? , ^ we see that af surely 
are roots of P(i>(/)-

Since I -T( l ) is invertible, the multiplicity of 0 is 2p minus the rank of Z(l). Z(l) has a 
simple block structure. It is an easy exercise to show that its rank equals r + v. (Recall that ^ + 
hj = at and ht - ht - bt.) 

Similarly, the multiplicity of 1 is 2p minus the rank of 
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K = ( K U KL K;; K^i-rcD-zd). 

Observe that 
r k | K U K u ^ j _ ^ fK u +K 1 } 

Kl2 K u 

and that K u + K12 (resp. K u - K 1 2 ) are cyclic matrices with entries 1, -al9 . . . , -a r ,0, . . . ,0 
(resp. 1, -bx,..., -br, 0,..., 0). By [3, Lemma 3], the rank of Kx?1 + KX 2 is p (resp. the rank of 
K x J - K J 2 is p-v), v being equal to the number of different /?* roots of unity that are roots of 
zr - Sy=i bjZr~J. Thus, rk K = 2p - v, which completes the proof of the lemma. D 

Let us define discrete random variables Xm by 

J>(Xm = k) = ̂ . (13) 

(Recall that dm(k): = |{0<a <m\S(a) = k}\.) It is well known that one can calculate mean and 
variance using the generating function: 

r2 _ w - _L( ni>n\A. n> n\-A.r>'n\2 

From here on, we will assume 1-6 in Section 3. 

Lemma 3: Let Ax(z) be the unique root of maximal modulus of P(/)(z). Then we have A"(l) ̂  0, 

A"(X\ 
uG :=EXG =0(1) and a% :=VXG = « £ + 0(l) 
^^k+sp Uk+sp V ' °ifc+*p Uk+sp A (I) 

as 5 -> oo. Furthermore, if A"(l) * 0, then 

Eexp 
( Xa. ~Ua. \ k+sp ^k+sp lt~ 
\ ^k+sp 

t2\[, .„( 1 = c x p | ~ l l + 0 O T 

as s—> oo. This means that Xam is asymptotically Gaussian with mean juGm and variance aGm. 

Proof: Let A(z) = ^(z) and Bk(z) = Bkl(z, s) in (12) (where the s-degree of the polynomial 
Bkl(z9 s) is zero). Since A'(I) = 0, we obtain from (12) by differentiation, 

DGkj\) = Bk(i)A(iy+o((A(\)rn 

D'G^ (1) = Bk(\)A(\y J*g + O {{A{\)YY), 

D^Jl) = Bk(l)A(iy(s^+^yO((A(l)yy), 

with some 0 < y < 1 properly chosen. From Z)Gjfc+j (1) = Gk+sp9 we get 

12 [FEB. 
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W), 

Both Dbk+sp(l) andDgk+sp(l) are real, and because of Bk(l) = B^f'1 eR+, B'k(\) is real. Further-
more, A"{\) and 2%'(1) are real, too. From this, we obtain that 

EXo^=^(l+°(rs)) = o(i), 

VXr. Jk+sp 

f
sA"(\)^Bll(l) (W)^ 

\ U 
(i+0(rs)) = s^-+o(i), 

A{\) Bk{\) {Bk(l) 

from which it is clear that A"(\) > 0. Using A'(\) = ^'"0) = °, we get 

A(e'y = Aiiyexp^^&y + Oist*)). 

Now suppose ^4"(1) > 0, then we have 

where the 0-constants are independent of A:. For any fixed t, we get 

r4 + l 

Eexp it-
Jk+sp ' ^k+sp 

Jk+sp J 

Jk+sp v 

G, exp 
k+sp 

-it-
^ k+sp 

Or Jk+sp J 

—"-Tjl,+0l7?JJ-
Thus, by Levi's theorem (see [7]), the normalized random variables (Xom - HGJI &Gm converge 
weakly to normal distribution. 

Remark: The use of generating functions for the proof of asymptotic normality probably started 
with Bender's paper [2]. Further references can be found in [5]. 

Now we will turn our attention to Xm9 where m need not be an element of the basis G. 

Theorem 2: Suppose that G = (G„) satisfies a linear recursion with restrictions 1-6 of Section 3. 
Then, with the above notation, we have 

EXm = 0(l) and VXm=t^ + 0(t), 
P AQ) 

Xm being defined as in (13) and / being the length of the digital expansion of m. If A"(X)> 0, 
then Xm is asymptotically Gaussian with mean value EXm and variance ¥Xm -clogm for some 
constant c > 0 , i.e., 

2K J-CO 
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Remark: The special case of G„ = Fn+l (which leads to the original Zeckendorf representation) 
was discussed in [4]. There are also recent contributions to similar questions, e.g., Dumont and 
Thomas [6] prove asymptotic normality for substitution sequences by a different method, and 
Barat and Grabner [1] show the existence of a limiting distribution of G-additive functions. 

Proof: Let m = S/=i ^G,- be the digital expansion of m. Iterated use of equation (7) yields, 
for 1 < j < /, i < ej9 and a < Gjy 

( i (. i-
^hGh+iGJ+a = (*,mod2)S(Gt) + (-l)"5j 2 > A + ' G > + " 

= (sl mod 2)S{Gl) + (-1)*' ( s M mod 2)5(GM) + • • • + (-1)*'+'"+^2 {sj+l mod 2)S(Gj+l) 

+ (-l)£'+':-+s^ (i mod 2)S(Gj) + (-iyi+'"+€j+l+i S(a) 

= X (-l)€l+'"+£p+l (ep mod 2)S(Gp) + ( - l ) ^ + - + ^ (i mod 2)S(Gj) + (-if+'"+8'+l+i S(a), 

and from (4) we see that 

I dm(k) = 0<a<^siGk\S(a) = k 
I Bj-\ 

= 1 1 y=i /=o 
\0<a<G, Y^e^ + iGj+aUk] 

VW+i ) J 

-EI 
;=1 ;=0 

0 < a < G , 

/ 

% ) = (-l> */ + •••+*,+,+/ 

Y| 

k - Z(-1)"*""""'*1 S(Gp)- (-l)*/+'"+^+1 (i mod 2)S(Gj) 
P=j+i 

*„-l(2) /J 

/ */ * , - l 

y=i /=o 

f 
£, + -+SJ+l+i 

w 
k- i(-l)€l+'"+€p+lmp-(-rfl+-+€J+l(imod2)mj 

P=j+\ 

and 

AreZ 

y=l /=0 keZ 

£l+-+£j+l+i\ 

\ \ 

k - £(-l)*/+""+Vl^(G,) - (-l)*'+"+^(i mod 2)S(Gj) 
v «p-i(2) JJ 

;=1 |=o fceZ 

(-l)*'+-+*;+'+,fc+ 2(-l)*'+""+i r | '+ ,^+(-l)f f '+""*y+1(/mod2)»i>/ 
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=1; 
£(-ir'+"~'*'« 

y^" 1 ^ '* +£ '̂('mod2)'"-')JD (z((-i)"+""M'M+')) 

in which 
=11̂ 1 Vi 

;=1 7=0 

6(7,0 = i ; . ( - l ) e , + " ^ , i » p + ( - l ) " + "^ , ( /mod2)« y , 
*.«1(2) 

(14) 

c(7,o=(-ir/+"^+,+'-
Differentiation of (14) yields 

**£(*)=I i(6a,'yu-0AJ,(^a-0)+^')^(^/'0K/.»K(y,')). 
y=i <=o 

zj-(zD>m(z)) = Z X(*C/. i)2zb O'0DG(zc^) + 2b(j,i)zb^ DG(z«^)c<J, tyV* 
<% ,=1 ,=0 

+ z
bu- '\zcU- °DG (zcU- °)+z2c°- *>Dg (zc(A °))). 

It is an easy exercise to show Hl
J=l(l-j + l)kGj^CkGt. Because the ntj are bounded, we get 

b(j, i) = 0(1- _/' + l) (uniformly in i) and 

^ 0 ) = Z £ (bU,i)DGa) + c(j,i)DGj(l)) 
j=\ 1=0 

7 / 
O I ( / -7 + l)Gy 0(G,) = 0(rn) 

and 

<fc woo) 
« ^ s , - i 

= I I ( * O - , 0 2 A J / I ) + 2 * C / , I - K / , 0 ^ ( I ) + ^ 0 ) + ^ / ( I ) ) 
lz=l y=l ,'=0 

/ A"(\) 

l A"(\) 
P A(\) P A(\) + 0{m) 

mj-m+o(m)-
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Thus, we have 

EXm = 0(l) and VXm = -L^-+0(l). 

Furthermore, by using (14), we obtain 
( 

A.(^-)=S«p 
;=i 

\ 
i 

V ^=1(2) 

x E e x p j ^ ( - l ) ^ 
it r n f / + . . .+o 1+;-

and for any fixed t, 

A ^ P ^ - i ) ' ' * "«* ' ) ) = A , exp 

( A 
= Gj exp (M())) 1 + 0 ' l * 

\Jf; 

-i-iy 
, Gj 

= G/-'2/2exp 
ftlzl + a-L. 

2 I ,yfj, 

and 

|U(^(-l)--+-Omod2H)/£(l + o (^) 

•=<j\1+°\ziT l h ^ e x p f o r 1 II V7 

where the (9-constants do not depend on / ory. Thus we get, for 0 < & < y, 

77 

r 

(-;»<;<! I W U •\ylJJ) i<y</-/» 

= i _ I j A e x p ( O ( / » - * ) + O ( ^ f ) ] + 0 ( G l w , ) 

= Z W l + 0(('-*)j + 0(oi-' ,)= 2«A+0("""" 1 )+0(a i - " ) 
/-/9<;</ /-/d<;</ 

and, finally (for any fixed t), 
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Eexpl itXm Mm) = Dm{elt/CTm)Qxp(-it^ 
1 o-m m I <j„ 

| V l + 0(/H)) ( I 

and Xm is asymptotically Gaussian with mean iim and variance a2
m. D 

The condition that zr-Z|*=1&^r-/ (where v = max{l<i <r\bt ^ 0}) is a product of zr~v and 
different cyclotomic polynomials is rather restrictive in the case in which Gn < 2Gn_x for n > 1. 

Proposition 5: Suppose that G = (Gw) satisfies a linear recursion with restrictions 1-5 of Section 
3 such that Gn < 2Gn_x for n > 1. Then zr - J?i=l b^1"1 is a product of zr~v and different cyclo-
tomic polynomials, where v = max{l <i <r \bt ^0}, if and only if one of the following conditions 
holds: 
L r = 1 and ax - 2: the binary system, or 
2 Oy = a2 = • • • +ar = 1: a generalized Zeckendorf representation. 

Proof: First, let 5(z) = zr - Xz
r
=1 ̂ r _ / be of the above type, then if ax > 1 we are in the first 

case. So let us assume ax = 1, then it follows that ay e {0,1}, ar = 1, and therefore v = r. From 
this, we see that zr - E[=i btzr~l must be a symmetric polynomial that yields at - ar_t for all 
l< i '< r . Now suppose ax =--- = a/_1 = l = ar =-«- = ar_/+1 and ax=0 = ar_f fo r somel< i< r-i. 
Then, by assumption 3 in Section 3, we have that Gn_rM > YIj=r_iJ>rlapn_j = EJ=r_/+1 Gn_j for n>r 
or, equivalently, that Gn >Sy=iGn_j for n>i. Because Gn - Zy=i<*pn-j for « > r, it follows that 
TJj^+idjG^j >Gn_j forn>r. On the other hand we have, again by assumption 3, that G„_, > 
YJj=i+iafGrJ-j f°r n> r> fr°m which we see that Gn = Zy=\ai+JGn_j for n> r-i, a contradiction to 
assumption 4. 

Now let r = 1 andax = 2, then v = 0 and B(z)-z. Finally, suppose ax = a2 = ••• = ar = 1. 
Then 6/ = (-iy+1 and 

,=o z + l 

is of the desired type. • 
4,2 Unbounded S(Gn) 

Proposition 6: If S(Gn) is unbounded, then there exists some a with \<a<al {ax defined as in 
Section 3), k>l, real numbers <px,...,<pk, and polynomials fii(n), ...,j3k(n), Px(ji)9 ...,(3k{ri) not 
all of them zero, such that 

5(G#l) = a"t09/(/i)co8(ii^)+A(ii)sin(/i^))+C>(0'a)") 
1=1 

for some y e(0,1). 

Proof: Since S(Gn) satisfies the linear recurrence of Proposition 2, this representation fol-
lows immediately. D 
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Theorem 3: Suppose that G = (G„) satisfies a linear recurrence as above such that S(Gn) is 
unbounded. Then 

l i m s u p i o g ( l ^ ) l ) = i o g g 

m^oo logm logal 

Proof: First, it follows from Proposition 6 that 
r log(\S(m)\) ^ v log(\S(Gn)\) log a 
hm sup , v /u > lim sup , * =-r-g—. 

ŵ oo logm m_>^ logG„ loga^ 

The upper bound follows from the second part of Proposition 2 and again by an application of 
Proposition 6: Let m = Zy=i £jGj be the proper digital expansion of m and let C, K > 0 be large 
enough so that |/?,(w) + /?/(w)| < Cw^ for all w, i. Then we have, for / -» oo, 

log(l^)l) ^ lQgK=il^(G/)l) ^ log(/a'(C/D + Cy)) 
logw logO/G,) log^+logG, 

< / l o g q + (D + l)log/ + Cw log a 
/logaj + C" log a / 

which completes our proof D 

Remark: It is also possible to discuss the function F(m) = S(m)m~{loga)/(logai) in more detail. It 
turns out that F(m) is an almost periodic function, i.e., S(m) has an almost fractal structure. You 
just have to adapt the methods used in [8] and [9]. 

5. CONCLUSIONS 

Our starting point was the Mobius function juG(ri) of the partial order which is induced by 
proper digital expansions with respect to a basis G = (Gw). It turned out that juG(n) e {-1, 0,1}, 
so it is a natural question to determine the distribution of these three values -1,0,1. If Gw+1 > 2Gn 

for all n > 1, then the answer is very easy (see Proposition 1). Therefore, we restricted ourselves 
to the case Gn+l < 2Gn for all n > 1. Here juG(n) = (~l)SG(n). Thus, fdG{n) * 0 for all n > 0 and 
MG(N) = SG(N) is exactly the difference between the number of n < N with juG{ri) = 1 and the 
number of n< N with juG(ri) = - 1 . In the case of linear recurring sequences G = (Gn) (satisfying 
certain natural conditions), we proved that in any case MG(N)~o(N), i.e., -1,+ 1 are asymp-
totically equidistributed. 

More precisely, we discussed the distribution of values of SG(N) (which can also be con-
sidered in the case G„+1 > 2G„). It turns out that there are two essentially different cases, the case 
of bounded SG(G„) and the case of unbounded SG(Gn). If SG(G„) k unbounded, then SG(N) has 
an almost fractal structure (see Theorem 3 and the Remark following it). However, if SG(Gn) is 
bounded for all suitable initial conditions of G, then the values SG(N) admit a Gaussian limit law 
in the following sense: If Xn is a random variable defined by 

J>(XN=k) = jj\{r,<N\SG(n) = k}\ 

then XN is asymptotically Gaussian with bounded mean value and variance VXN -clogN, pro-
vided that c * 0 (Theorem 2). 
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Since SG(Gn) satisfies the linear recurrence (2), it follows that SG(Gn) Is periodic (for suffi-
ciently large ri) if it is bounded. This can only occur for all suitable initial conditions of G if and 
only If the roots of the characteristic polynomial B(z) = zr-'Zr

JsslbjZr~J of (2) are 0 or roots of 
unity. Therefore, the assumption on B(z) in Theorem 2, this is assumption 6 in Section 3, is quite 
natural. 

Finally, we want to recall that the only recurring sequences G = G(n) satisfying assumptions 
1-5 such that ax = 1 (I.e., Gn+l <2Gn) and that B(z) is the product of zr~v and cyclotomic poly-
nomials are generalized Fibonacci numbers (Proposition 5). They satisfy a recursion of the form 
Gn = Gn_x + '-+Gn_r. Here Theorem 2 applies. Hence, the values of MG(N) with respect to 
generalized Zeckendorf representations satisfy a central limit law. 
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