DIVISIBILITY TESTS IN \mathbb{N}

James E. Voss

129 Woodland Avenue \#7, San Rafael, CA 94901
(Submitted April 1996-Final Revision September 1996)
This article will develop a method to test divisibility of arbitrary natural numbers by certain fixed natural numbers. The well-known tests for divisibility by 3,9 , and 11 will be obtained as special cases of the theorem. Note that all the variables in the following theorem are integers.

Theorem: If $(s, 10)=1, t \equiv 10^{-1}(\bmod s), n=\sum_{k=0}^{r} 10^{k} a_{k}$, and $m=\sum_{k=0}^{r} t^{r-k} a_{k}$, then $s|n \Leftrightarrow s| m$.
Proof: We will expand n and use standard congruence properties:

$$
\begin{aligned}
n & =10^{r} a_{r}+10^{r-1} a_{r-1}+\cdots+10 a_{1}+a_{0} \\
n & \equiv 10^{r} a_{r}+10^{r-1} a_{r-1}+\cdots+10 a_{1}+a_{0}(\bmod s), \\
10^{-r} n & \equiv a_{r}+10^{-1} a_{r-1}+\cdots+10^{1-r} a_{1}+10^{-r} a_{0}(\bmod s), \\
\left(10^{-1}\right)^{r} n & \equiv a_{r}+10^{-1} a_{r-1}+\cdots+\left(10^{-1}\right)^{r-1} a_{1}+\left(10^{-1}\right)^{r} a_{0}(\bmod s), \\
t^{r} n & \equiv m(\bmod s) .
\end{aligned}
$$

Now $t \equiv 10^{-1}(\bmod s) \Rightarrow 10 t \equiv 1(\bmod s) \Rightarrow s \mid(10 t-1) \Rightarrow z s=10 t-1$ for some $z \in \mathbb{Z}$. Hence, $10 t-z s=1$, which implies $(s, t)=1$.

The statement $t^{r} n \equiv m(\bmod s)$ allows us to conclude that $s|n \Rightarrow s| m$; with the additional fact that $(s, t)=1$, we can conclude that $s|m \Rightarrow s| n$.

Remark: This theorem generates a divisibility test for any natural number s that is relatively prime to 10 . The practicality of the test comes into play for s with an associated t value close to 0 .

Divisibility Tests for Specific Natural Numbers

1. Let $s=3$. Then $t \equiv 10^{-1}(\bmod 3)$ allows us to choose $t=1$. Hence, $3|n \Leftrightarrow 3| m$, where $m=\sum_{k=0}^{r} a_{k}$
2. Let $s=9$. Then $t \equiv 10^{-1}(\bmod 9)$ allows us to choose $t=1$. Hence, $9|n \Leftrightarrow 9| m$, where $m=\sum_{k=0}^{r} a_{k}$.
3. Let $s=11$. Then $t \equiv 10^{-1}(\bmod 11)$ allows us to choose $t=-1$. Hence, $11|n \Leftrightarrow 11| m$, where $m=\sum_{k=0}^{r}(-1)^{r-k} a_{k}$.
4. Let $s=19$. Then $t \equiv 10^{-1}(\bmod 19)$ allows us to choose $t=2$. Hence, $19|n \Leftrightarrow 19| m$, where $m=\sum_{k=0}^{r} 2^{r-k} a_{k}$.
5. Let $s=7$. Then $t \equiv 10^{-1}(\bmod 7)$ allows us to choose $t=-2$. Hence, $7|n \Leftrightarrow 7| m$, where $m=\sum_{k=0}^{r}(-2)^{r-k} a_{k}$.
6. Let $s=29$. Then $t \equiv 10^{-1}(\bmod 29)$ allows us to choose $t=3$. Hence, $29|n \Leftrightarrow 29| m$, where $m=\sum_{k=0}^{r} 3^{r-k} a_{k}$.
7. Let $s=31$. Then $t \equiv 10^{-1}(\bmod 31)$ allows us to choose $t=-3$. Hence, $31|n \Leftrightarrow 31| m$, where $m=\sum_{k=0}^{r}(-3)^{r-k} a_{k}$.

Specific Examples

Ex. 1: $n=5232$ is divisible by $s=3$ because we can take $t=1$ and $m=5(1)^{0}+2(1)^{1}+3(1)^{2}+2(1)^{3}=5+2+3+2=12$ is divisible by 3.
Ex. 2: $n=7119$ is divisible by $s=9$ because we can take $t=1$ and $m=7(1)^{0}+1(1)^{1}+1(1)^{2}+9(1)^{3}=7+1+1+9=18$ is divisible by 9 .

Ex. 3: $n=80916$ is divisible by $s=11$ because we can take $t=-1$ and $m=8(-1)^{0}+0(-1)^{1}+9(-1)^{2}+1(-1)^{3}+6(-1)^{4}=8-0+9-1+6=22$ is divisible by 11 .
Ex. 4: $n=2242$ is divisible by $s=19$ because we can take $t=2$ and $m=2(2)^{0}+2(2)^{1}+4(2)^{2}+2(2)^{3}=2+4+16+16=38$ is divisible by 19.
Ex. 5: $n=686$ is divisible by $s=7$ because we can take $t=-2$ and $m=6(-2)^{0}+8(-2)^{1}+6(-2)^{2}=6-16+24=14$ is divisible by 7.

Ex. 6: $n=4350$ is divisible by $s=29$ because we can take $t=3$ and $m=4(3)^{0}+3(3)^{1}+5(3)^{2}+0(3)^{3}=4+9+45+0=58$ is divisible by 29.

Ex. 7: $n=527000$ is divisible by $s=31$ because we can take $t=-3$ and $m=5(-3)^{0}+2(-3)^{1}+7(-3)^{2}+0(-3)^{3}+0(-3)^{4}+0(-3)^{5}=5-6+63=62$ is divisible by 31.

ACKNOWLEDGMENT

I would like to thank Dr. Neville Robbins for his advice and encouragement.

REFERENCE

1. N. Robbins. Beginning Number Theory. New York: Wm. C. Brown, 1993. AMS Classification Number: 11A07
