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1. INTRODUCTION

In [1], R. André-Jeannin considered a class of polynomials U, (p, ¢; x) defined by
U, 4, %) = (x+p)U, (P, 4 ¥) —qU,»(p, ¢, %), n>1,

with initial values Uy(p, ¢; x) =0 and U,(p, g, x) =1.

Particular cases of U,(p, q; x) are: the well-known Fibonacci polynomials F,(x); the Pell
polynomials P,(x) (see [4]); the Fermat polynomials of the first kind ¢(x) (see [5], [3]); and the
Morgan-Voyce polynomials of the second kind B,(x) (see [2]).

In this paper we shall consider the polynomials ¢,(p, g; x) defined by

8,(P, ¢, x) = (x + P)P,1(P. 4, X) — 98, 3(P, G, ¥), (1.0)

with initial values ¢_,(p, q; x) = ¢o(p, q¢; x) =0 and ¢,(p, g; x)=1. The parameters p and g are
arbitrary real numbers, g #0.
Let us denote by «, 5, and ¥ the complex numbers, so that they satisfy
a+f+y=p, af+ay+pfy =0, affy =-q. 1.1
The first few members of the sequence {¢,(p, q; x)} are:
(D, ;X)=p+x;, (P, q,x)=p*+2px+x% (p,q;X)= P —q+3p*x+3pxt+x°.

By induction on 7, we can say that there is a sequence {c, ,(P, ¢)},20, ;>0 Of numbers, so that
it holds

¢n+1(pa q, x) = ch,k(pa q)xka (12)

k20

where ¢, . (p,q) =0 for k>n and ¢, (p,q)=1. Therefore, if we set c_; ,(p,q)=c_,,(p,q)=0,
k >0, then we have

(0. 4 %) =D oD X" and @o(p, g x) =D .y (p, Px*.

k20 k=0

Later on, we consider some other interesting sequences of numbers, define the polynomials

6L (p, q; x) and ¢2(p, g; x), which are rising diagonal polynomials of ¢,(p, g; x) and @.(p, g; x),
respectively, and finally, consider the generalized polynomials ¢, (x).

2. DETERMINATION OF THE COEFFICIENTS ¢, ,(p, q)

The main purpose of this section is to determine the coefficients ¢, ,(p,q). First, for n>1,
k=1, from (1.0), (1.1), and (1.2), we obtain

D D=, 4D, D+ D¢ 1 (P, ) — 96,34 (D, 9)
= n—X,k—l@? q) + (a +ﬂ)cn—l,k(p> q) +}/(cn—l,k (p’ q) - }’(a’ +ﬂ)cn—3,k (pa q))
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Therefore, we shall prove the following lemma.

Lemma 2.1: For every k >0, we have

(A-pt+gy ™V =3 d, 1", 1)
n20
where
k+i\(k+j\(k+s) inis
1 ¢ ey

Proof: From (2.1), using (1.1), we get
(1 "pt +qt3)—(k+l) - (l _ at)'(k“)(l —ﬂt)_(k+l)(1 _ }/t)——(k+1)
k+i(k+j\(k+S) inj s;n
£ 3 () e
n20 i+j+s=n
Statement (2.2) follows immediately from the last equality. O

Now we shall prove the following theorem.
Theorem 2.1: The coefficients c, ,(p, q) are given by

k= X (kif i)(sz g )(k i s)a"ﬂfr‘- 23)

i+ j+s=n—k

Proof: First, let us define the generating function of the sequence ¢, (p, g; x) by

Fx,0)=3 $uu(p, ¢ 01" (2.4)
nz0
Then, using (1.0), we find
F(x,t)=(1~-(p+x)t+q>)L. (2.5
Now, from (2.5) and (2.4), we deduce that
F(x, 1) kit

= — (k) Cx tn+k
o (1—(x+p)t+qt3)k“ ’§)¢n+l+k(pa q; x) >

since ¢,.,,(p, q; x) is a polynomial of degree n. If we take x =0 in the last formula and recall that
— _1_ (k) )
cn+k,k(p’ q) - kI ¢n+l+k(p7 q, )’

then from (3), and by Taylor's formula, we get

(A= pt+qy 0 =3 0 (0, 1" (2.6)

n20
Comparing (2.6) to (2.1) and (2.2), we see that
1
Cori i (0> 9) = E¢$1?1+k (»,q,0)=4,,

_ (k;i)(k;j)(kz—s)aiﬂjys. 2.7

i+j+s=n
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By (2.7), we see that
N k j k + j k i P
cn,k(p’q)zdn—k,k: Z ( ;l)( k])( ;s)aﬁj}, .
i+j+s=n—k
This completes the proof of Theorem 2.1. O

Remarks:
(i) If k£ =0, then (2.3) becomes

o= DBy =6, q0).

i+j+s=n

(i) If p=0, then (2.1) becomes

- n( k ng3n
(1+g3y & = Z(_l) ( ;—n)q £
n20

Thus, we get

-2k
Cnn-3t(0,9) = (- ¥ (n k )qk’ Cpn-3t-1(0,9) =0, ¢, , 3 ,(0,9)=0,

for £ < [n/3]. Now, from (1.2), we find that

(/3] n/3

etk _ N (n=2Kk) ko
$,11(0, 4, x) = l;)cn,n—fik(o’ qQ)x = Z(—l) k qx .

k=0

We shall prove the following theorem.

Theorem 2.2: The coefficients c, ,(p, q) have the following form:

[(n—k(/3]
r(n=2 -3 r . n=3r—
Gup.)= Y, 0[P gt nzk

r=0

Proof: Using (1.0), we see that ¢,,,(p, q; x) =9,.,,(0,q; x+ p). Thus,
1 1
k(P @) = 77450 4. 0) = 7 4520, 4 P).
Now, by (2.8), it follows that
1 (CIC B S
719m0.q p)= go - (n r r)(n k r)q e
This is the desired equality (2.9). O
Corollary 2.1: From (2.9) or (2.3), we find that:
—a-f-r=-p;
)=B)+EREY) +(-a)(-r) =0;
a)=P)-r)=9.
Hence,

Cn,k('—p’ - q) = (— l)n—k Cnk (pa q)
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3. APARTICULAR CASE

In this section we shall consider a particular case of the polynomials ¢,(p, g; x).
Ifa=p+#y,thena=B=2p/3,y=-p/3,and 27g =4p*. In this case, by (2.1), we get

(1= pt +qr3) D = (1 - o) 26D (] — y)~+D
230> (2k+i1+i)(k f])a"yf "
n20 \i+j=n '] A
Therefore, we have

- i (2k+1+0\(k+j

D) =1y Ty (PRI
i+j=n-k J
4. SOME INTERESTING SEQUENCES OF NUMBERS
Here we shall consider the following sequences of numbers.

(a) If we take x = —p, we get the sequence ¢,(p, q; — p) =0. This sequence has the follow-

ing properties: ¢;,(p, q; — P) = $3,.2(p, 4, - p) =0 and ¢5,,,(p, ¢;— p) = (-1)"q". From relation
(1.2), it follows that

3n+l

Z (_ l)kpkcBnH,k(p’ q) = Oa
k=0
for /=1, and
3n c &
Z(_l) PG (P, 9 =(-D"q",
k=0

forl=2.
(b) Using (1.0), for x = 0, we have the sequence {¢,(p, ¢; 0)}, which is defined by

¢n(p’ q, 0) = p¢n—1(p7 q, O) - q¢n—3(pa q, 0),
for n> 2, with initial values ¢_,(p, g; 0) = ¢,(p, ¢; 0) =0 and ¢,(p, q; 0) = 1.

5. RISING DIAGONAL POLYNOMIALS

Now, we define the polynomials ¢ (p, ¢; x) and ¢>(p, ¢, x). Also, we define the polynomials
@7 (x). First, we shall write the polynomials ¢,(p, g; x) in tabular form (see Table 1). We define

the polynomials ¢ (p, g;x) by
n/2 n/2

[n/2] [n/2}
B, g, %)= Y. ch (D, @x* = Y ¢\ (D, PXF, (5.1)

k=0 k=0

where ¢,(p, g; x) = 0 and ¢ (P, q) =0 for k>[n/2]. Also, from Table 1, we get

$ip, g x)=1 ¢(p,g;x)=p, (P, g x)=p*+x,

(5.2)
(D, g, x) =P —q+2px, $5(p,q;x)=p*-2pg+3pPx+x.
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TABLE 1
n .
0 0
1 1
2 p +x
3 p? +2px +x?
4| p*-q +3p*x +3px? +x3
5|p*-2pq +@p*-q)x +6px? +4px® +x*
6| p°-3p*q +(Sp*—6pg)x +(10p*-3q)x* +10p°x> +5px* +x°

In fact, we will prove the following theorem.

Theorem 5.1: The polynomials ¢l (p, ¢; x) satisfy the following recurrence relation:

$n(p. 4, X) = pdhi(D, 4; X) + XP), (D, 4, X) — qh3(P, 4, X), n23. (5.3)

Proof: To prove (5.3), we will use the notations ¢.(x) and ¢, instead of ¢L(p, q; x) and
¢,.+(p, q), respectively, and proceed by induction on n. From (5.2), we see that statement (5.3)
holds for n=3. Suppose statement (5.3) is true for n>3. Using (5.1), and by (2.0), we obtain

[n/2]
G (%) = Cro + kzlc e

[n/2]

_ k

= PCr1,0 ~q4Cn-30 T Z(C 1k k=1 T PCnotok k. — GCn-3-k,1) %
=1

[(n-1)/2] [(n-if/z] [(n—i/z]
_ k k k
=p Co1-k, kX" — 4 Co3-k kX TX Cpf kX",

since the relation ¢, o = pc,_; o — gCn-30 is valid for n>1. Thus, statement (5.3) follows by the last
equality. This completes the proof. 0

Similarly, let #2(p, g; x) be the rising diagonal polynomial of @.(p, g; x), i.e.,
(/3]

2a(p, g, x) = kZ:cl—k,k(p, g)x*~.
=0

Furthermore, if we denote the process
$a(x) > $,(x) > $3(¥) > -+ > F(x)
by #%(x) = ¢,(p, g, x), then we have
Gk =Cni and it =cly (54
From relations (5.4), we get
k= Ok =" = Ol
Hence, for £ =0, we have

— A0
cr':,'O - Cn,O - cn,O'
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Ifn=0,1...,m, then [n/(m+1)]=0, so we have
Pra(x)=clo=¢C9, 1=0,1,...,m.

Also, we get
[n/(m+1)]

Fra(x) = ZC -—mk,kxk ) (5.5
k=0

where ¢, =0 for k£ >[n/(m+1)]. Therefore, we are going to prove the following theorem.

Theorem 5.2: The polynomials ¢'(x) satisfy the recurrence relation
#r1(0) = PEI(D) ~ qF () + X, (x), n=m=2, (5.6)
where ¢7(x) = ¢'(x) =0 and ¢}, (x) =y, n=0,1,...,m.
Proof: We prove that (5.6) holds for nzm>2. If n=m, then
P (%) = im0 = PCr-1,0 ~ 4Cm-3,0
= P#n(x) = o (x) +x47(x)  ($o(p, ¢, ¥) = 0).
Assume now that 7 >m+1, then, by (2.0), we have

[n/(m+1)] [n/(m+1)]
(X)) = Zc —mk,kxk =Cpot ch—mk,kxk
k=0 k=1
[n/(m+1)]
= PCh1,0 94630 2 I(Pc -k, k ~ FConmie-3,k t cn—mk—l,k—l)xk (n—mk>1)
[ri(m+D)] [n/(m+D)] [n/(m+1)]

_ k
=p Z Cot-mic, kX —4 Co3emic, kX X Co-1-mik, k~1%
k=0 k=0 k=0

k~1

{(n=1)/(m+1)] f(n=3)/(m+1)] [(n=1-m)/(m+1)]

=p Crtomi X — 4 Co 3ok, kX T X Crrmemk -1,k
k=0 k=0 k=0

= P (x) =, () + xg,_,,(x). O
Corollary 5.1: The coefficients ¢, satisfy the following relation,
o= POk —Gonak tCotemi-y M20,n22,n2m k=1,
where ¢, = ¢, (D, q).

Corollary 5.2: For m=2, from (5.6), we have
Fa(x) = pPra () +(x ~ g5 o(x), n22, (5.7
with g5(x¥) =0, ¢,,(x) =0 = 6,0, 7=0,1.

Remark: For every n>1, we have
2P 4, %) = 4,(p, x = ; 0). (5.8)
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Proof: By (1.0), the sequence {¢,(p,x—q;0)} satisfies relation (5.7) with ¢,(p,q—x;0)=0,
$(p,g—x,0)=1, ¢,(p,q—x;0)=p. From this and (5.7), we see that (5.8) holds for » =1 and
n=2. If (5.8) holds for n <m, then for n=m+1 we get

bnr (P, 4 %) = PI(D, 4 %)~ (g~ )P a(P: 4 %)
= P8P, 4-%,0)- (9 -9, (2, 9-%,0) = 4,,,,(p, ¢ - x; 0).
Using induction on », we conclude that relation (5.8) holds for every n>1. By (5.8), and from
(2.9) with £ =0, we get

[7/3)
CRITEED) (g CEPres 5.9)
r=0

Special Cases

For x =g, by (5.9), we have
(n/3]
k .1 o
q (D) =D".
k=0
For p=2 and g =1, the last equality becomes

[n/3)

2 G2, 1)=2".
k=0

For p = 0, the polynomials ¢2,,(p, ¢; x) have the following representations:
#7.1(0,4, %) = (x - q)°
for n=3s, and
#710.:%)=0

forn=3s+1and for n=3s+2.

6. GENERALIZATION
If we consider the general recurrence relation
U,(x) = (x+p)U,,(x) = qU, ,(x) +rU, 5(x), n=3,
we find that
Upa®) = 364,01
where .
2 ke, @, " = (1= pt +q1* = rr?y .

n20

In this case, we have a+ +y = p, aff+ay + fy =q, and affy =r. Particularly, if a = S =
y=p/3,then g=p*/3 and r = p*/27. So we get

ch+k,k(p’ q, r)tn = (1 - m)—3(k+l) = Z
n20

n20

3k+2+ non
( 3;+2n)(p/3) ’;

hence,
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2k+2 e
cn,k(p: qar) =( 3}:_}_;")@/3) k.

Thus, we can define BX(x), i.e., a generalization of Morgan-Voyce polynomials, by setting

a=pf=y=1(e, p=3,q=3,r=1),

8o =3("57E 57 )
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