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1. INTRODUCTION 

The concept of "Z-densities" is introduced in this paper, leading to several interesting conjec-
tures involving the divisibility properties of the Fibonacci entry-point function. 

We let 2£= {^}^=i and X = {Ln}™=l denote the Fibonacci and Lucas sequences, respectively. 
Given m, the Fibonacci entry-point ofm, denoted by Z(m), is the smallest n > 0 such that m\Fn\ 
in.this case, we write Z(m) = n. Ifm and n are arbitrary (with m>\), m\Fn iff Z(m)\n. 

If m = p, a prime-*2 or 5, it is well-known that Z(p)\(p-sp), where e =(51 p), the 
Legendre symbol 

Given an arbitrary sequence °U = {U„} of positive integers, we say that p divides °U, and 
write /?|°U iff p\Un for some n. Let n^(x) denote the number of primes p < x such that /?|°ll; 
also, 7t(x) is the number of primes p < x. The "natural" density, or simply the density, of °U is 
given by 

&U = lim x%(x) I K(X) . (1.1) 
X-»00 

It is well-known that p\3? for all/?, and so 0&=l. This is certainly not the case for a general 
°U. J. C. Lagarias [6] has determined 0°\i for a few specific sequences, among them ££. As far as 
the topic of this paper is concerned, the most interesting result obtained by Lagarias was the 
following: 

0<e = 2 / 3 . (1.2) 

That is to say, 2/3 of all primes, asymptotically, divide some Lucas number. 
Now, it is also known that p\'X iff Z(p) is even. It follows that the density of those primes/? 

for which Z(p) is even is equal to 2 /3 ; note that this extends our initial definition of "density." 
The aim of the present paper is to generalize this perspective. Thus, we ask the question: Given 
m, what is the density of those/? for which m\Z(p)7 

We can also ask the more fundamental question: Given m, what is the density of those/? such 
that Z(p) = ml However, it is clear that such densities are zero for all m, since they characterize 
the primitive prime divisors of Fm (for a given m), which are necessarily finite in number; there-
fore, the density of those/? such that Z(p) = m is of no interest to us here. 

To obtain answers to the first question above, we introduce various types of densities that 
involve Z(p) in their definitions; such densities are referred to as "Z-densities." Here is a formal 
definition: Given m and x, let M(m, x) denote the number of p < x such that m\Z(p). Then we 
define £(m)9 the "Z-density of m as a divisor," as follows (assuming the limit exists): 

£(m) = lim M(m, x) I n(x). (1.3) 
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Clearly, £(1) = 1; also, using Lagarias' result, ^(2) = 0$ = 213. 
Based on an examination of certain Fibonacci entry-point data [4], [5], one of the authors 

(Bruckman) reached some conclusions regarding the evaluation of £(m) and related Z-densities. 
More recently, the other author (Anderson) has strengthened the evidence for these conjectures, 
using extended data produced by computer runs. Much of the numerical evidence for the various 
conjectures made in this paper has been omitted in the interest of brevity. However, for the sake 
of demonstration, we have included in the Appendix one of the tables that comprise such evidence 
(in abridged form). Additional details may be obtained from either author upon request. Known 
or proven results are annotated in the usual manner. Conjectures and consequences of such con-
jectures are marked with an asterisk; in the narrative, these are referred to frequently as "condi-
tional results," meaning "results conditional on the conjectures." 

The following is one of the consequences of these conjectures, valid for all primes q: 

ai) = q/(q2-i)- (i.4)* 
The characteristic polynomial of the sequences 9 and X has the irrational zeros a and /?, the 
familiar Fibonacci constants. For sequences having a second-degree characteristic polynomial 
that has integral zeros, (1.4)* was proved by C. Ballot [1]. Thus, Ballot's result is, conditionally, 
more broadly applicable. The methods employed by Ballot to establish his result are beyond the 
scope of this exploratory paper. 

In the present work, the authors have restricted their analysis to the sequences 2F and X. 
Further generalizations are left to other researchers. 

Before proceeding to the main points of this paper, we find it convenient to decompose the 
appropriate Z-densities into certain "component" Z-densities, defined below. Our study of such 
component Z-densities led to the main conjectures we formulated. 

In this paper, lower-case letters represent nonnegative integers, except for x, which may be 
any positive real number (generally thought of as large). However, the letters m and n represent 
positive integers, and the letters/? and q represent primes. 

2. COMPONENT Z-DENSITIES 

We begin with a basic definition of "q1, qJ Z-densities." Given q, x, i, andy, with i > j > 0, 
let M(q, x; i, j) denote the number of p < x such that q1 \\ (p - sp) and qj \\Z(p). The expression 
q°\\n is taken to mean q\n. Then the "q\qj Z-density," denoted £(q\i9j), is given as follows 
(assuming the limit exists): 

C(q; i, j) - Km M(q, x; i, j) I TT(X) . (2.1) 

On the basis of empirical evidence, we formulate the following conjecture. 

Conjecture 2.1*: 

Cfa *,/) = < 
(q-2)/(q-l) ifi=7 = 0, 
q~2i i f / > W = 0, 
(q-l)q-l-2i+J i f />y> l . 

By the definition of £(q\ /', j), it is clear that, for all primes q: 
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/>y>o 
(2.2) 

It is readily verified that Conjecture 2.1* implies (2.2). 
Conjecture 2.1* appears to hold even for the "exceptional" primes 2 and 5, which play a 

special role in the study of ^ and 56. However, a different type of rule applies when we study the 
divisibility of Z(p) by both 2 and 5 in conjunction. This rule is considerably more complex than 
that indicated in Conjecture 2.1*3 must be offered in the form of a (two-dimensional) table, and 
requires a special definition: 

Given x, /*, j , k, and /, with i > j > 0, k > I > 0, we let M(2, 5, x; z, j ; k, /) denote the 
number of p<x such that 2i5k\\{p-8p) and 2J5l \\Z(p). Then the "2',2-/, 5*, 5l Z-
density," denoted ^(2,5; i, j ; k,l),is defined as follows: 

C(2,5; i, j ; k, I) = lim M(2,5, x; i, j ; *, /) / ;r(x). (2.3) 
X-»oo 

The numerical evidence, combined with general reasoning, suggests the following conjecture. 

Conjecture 12*: g(2,5; i, j ; k, I). 

( i , / ) \ (*,/): 

(0,0) 
0,0) 
(1,1) 

i £ 2 , y = 0 

(/,/), i*2 
i>j>2 

Column 
Totals 

(0,0) 

0 
1/4 
1/8 

2- i-2,-

2-i-/ 

2-2-2/+./ 

3/4 

yfc>l 
7 = 0 

0 
0 

l /2 -5" 2 t 

2l-2iy2k 

0 
2~2/+/c-2* 

5 - 2 * 

£ > / > l 

0 
0 

2 . c-l-2k+l 

2$-2ic-\-2k+l 

0 
22-2/+jc-l-2fc+/ 

4 . c-l-2i+/ 

Row 
Totals 

0 
1/4 
1/4 
2"2' 

2 - i - / 

2-1-2/+/ 

1 

The row totals in Conjecture 2.2* are the sums over all k>l>0 and are the g(2;i,j) 
obtained by setting q = 2 in Conjecture 2.1*. Likewise, the column totals are the sums over all 
i > j > 0 and are the £(5; k, I) obtained from Conjecture 2.1 * by setting q = 5 and replacing (i, y) 
by (k, I). Therefore, our conjectures are mutually consistent. 

The Z-densities introduced above give information about the divisibility properties of 
{p-£p) and Z(p). We now derive expressions for Z-densities that only yield information about 
the divisibility properties of Z(p). Accordingly, we make the following definitions: 

a^J)^aq;r + jJ); (2.4) 
r>0 

£(2,5; j,I)-X £<T(2,5;r +j, j;s+l,l). 
r>0 s>0 

(2.5) 

Note that £(q; j) is the density of those primes/? for which qj \\Z(p), and ^(2,5; j , I) is the den-
sity of those p for which 2j5l \\Z(p). If we substitute the putative results from Conjectures 2.1* 
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and 2.2*, respectively, into the formulas indicated in (2.4) and (2.5), we obtain the following 
expressions: 

r( ., J(<72-<7-l)/(?2-l) if7 = 0, 
aq;j) = \ , .... n . . . . (2-6)* 

I? 7 % + l) iO CI-
TABLE 2.1*. £(2Aj,l) 

1=0 l>\ 
Row 

Totals 

7 = 0 

7 = 1 
7 > 2 

43/144 

7/36 

43-2--/'/72 

51_'/36 
5 w / 9 

2--/5w/18 

1/3 

1/3 

2 w / 3 

cxlT »'« " « 
The row totals in Table 2.1* coincide with the £"(2;y) from (2.6)*; the column totals coin-

cide with the <̂ (5; /) from (2.6)* (obtained by setting q = 5 and replacing^ by I). 
We next require an additional set of Z-densities, this time involving mere divisibility of Z(p) 

by qj, instead of exact divisibility. Note that qJ\Z(p) iff there exists some r > 0 such that 
qr+J \\Z(p). Since r satisfying this condition is arbitrary, this suggests the following relations: 

aqJ) = TC(^r+j); (2.7) 
r>0 

£(2V) = £l£(2,5;r+;,*+/). (2.8) 
r>0 s>0 

The density (^(2J5l), according to definition (1.3), is the density of those p such that 
2J5?\Z(p). 

Substituting the conditional results from (2.6)* and Table 2.1* into the expressions in (2.7) 
and (2.8), we obtain the following: 

^ W - D '%:$ (2-9)* 

C(2>5'): 

1 if/ = / = 0 , 
52_'/24 if/ = 0,/>l, 
5s-'/144 ify = l , /> l , (2.10)* 
22-V3 i f /> l , /=0 , 
2_/52-'/36 ify >2, />l . 

Note that if we set 1 = 0 in (2.10)*, we obtain £(2J) as indicated from (2.9)* with q = 2; 
likewise, setting j = 0 in (2.10)* yields £(5'), obtained from (2.9)* by setting q = 5 and replacing 
j by /. Such numerical checks inspire confidence in the validity of our conjectures. 
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In the next section we use the conditional results obtained in this section to derive a general 
expression for £(m). 

3. DERIVATION OF £(m) 

We would normally expect that the Z-densities satisfy a multiplicative property of sorts; 
naively, we might suppose that £(m) = Uqj\\mC(qJ). However, there is apparently a certain 
amount of "distortion" in this putative multiplicativity law, due to the presence of the "special" 
densities £{2jSl) that might enter into the computation. In order to measure this distortion, we 
introduce a ratio defined as follows: 

pU,I) = a2J5l)/(a2JX(51))- (3-1) 
Computing p(J, l) from (2.9)* and (2.10)* is a relatively simple matter, and we obtain the follow-
ing expressions: 

[1/2 i f />2 , /> l , 
pU,r) = \5IA if/ = l , /> l , (3.2)* 

[l if/ = 0or / = 0. 

Based on the foregoing comments, we postulate the following "quasi-multiplicative" property. 

Conjecture 3.1 *: 

£(m) = p(J, 0 n ^ V ) > whenever 2J5f \\m. 

We may also redefine p(J, I) as an explicit function of m, as follows: 

p(m) = 
1 if lOj/w, 
5/4 if m = 10 (mod 20), (3.3)* 
1/2 if 20|m. 

Therefore, our quasi-multiplicative property now takes the following form: 

am) = p(m)UaqJ)- (3.4)* 

We may now substitute the values of £(qJ) from (2.9)* into the formula given by (3.4) 
Note the following: 

£(m) Ip{m) = Y[q2~J I (q2 -1) = t{m) /m, where 
qJ \\m 

t(m)^H(l-q-2)-\m>l;t(l) = l (3.5) 
q\m 

Therefore, we obtain our final formula for £(m): 

C(m) = p(m)t(m)/m, (3.6)* 

where pQn) and t(m) are given by (3.3)* and (3.5), respectively. As we may verify, this formula 
yields the known results: £(1) = 1 and £(2) = 213. Additional (conditional) results yielded by the 
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general formula in (3.6)* are as follows: £(3) = 3/8, £(4) = 1/3, £(5) = 5/24, etc. The condi-
tional result of (3.6)*, if true, implies that t,(m) is rational (and positive) for all m. 

Conditionally, the function C,(m) is not multiplicative, while the function C,{m)lp{m) is. 
Thus, if m and n are coprime, we have the interesting property 

amn) = p(mn)/(p(m)p(n)).amK(n)- (3-7)* 
Other interesting derived conditional properties of ^(m) follow from (3.6)*. In the interest 

of brevity, we omit the demonstration of these properties, and merely indicate the results. For 
example, (3.6)* implies the following: 

Y a m ) / m = 5 ' ^ n ' 3 1 ? 2 7 7 = 12,041,645/6,644,656. (3.8)* 
J^i ; 24-601.691 

We may also show (conditionally) that the average order of C(m), over all m<x, if 0(\ogx/ x), 
but omit the demonstration. 

We have omitted discussion of the densities of those/? for which Z(p) = m, where m is a 
specified positive integer. Such a density relates to the number of primitive prime divisors 
(p.p.d.'s) of Fm, since these are precisely those primes/? such that Z(p) -m. Hence, this density 
must be zero for all values of m, since the number of p.p.d.'s of Fm must be finite. On the other 
hand, the principles previously employed lead to a formula for such density in terms of the com-
ponent densities obtained in Section 2. Proceeding thus, we find that each such resultant density 
has a "constant" multiplier denoted as 8, where 

S = Yl{(p2-p-\)l(p2-\)}. (3.9) 
P 

However, the infinite product defining such "constant" 5 diverges to zero. To see this, note that 

o<«5=n{(i-w(p2-i)}<no-1^}; 
p p 

since it is well known that the latter product is divergent to zero, we see that S = 0. This, in turn, 
implies that the density of those primes/? such that Z(p) = m, as anticipated. 

From the definition of density and the Prime Number Theorem, we deduce that, for a given 
w, the number of p.p.d.'s of Fm is o(x/logx) for all m< x. In fact, it seems probable that the 
number of p.p.d.'s of Fm is OQogx), which is certainly o(x/logx). The conditional demon-
stration of this last statement is deferred, as it will be the subject of a future paper. 

4. NUMERICAL VERIFICATION 

In the interest of brevity, we have omitted all but one of the appendices that originally formed 
part of this paper. These contain the results of certain statistical tests conducted by the authors to 
test the validity of the conjectures. The tests were conducted by analyzing the data on Z(p) and 
p-sp for the first million primes (the highest such prime being 15,485,863). Although due cau-
tion is required in conducting any such tests, if we accept their validity, it may be stated with 
better than 95% statistical confidence that the conjectures are correct. 

For the sake of demonstration, we have included one of these tests (in abridged form) in 
Appendix 1. Anyone interested in seeing the complete results of such analysis may contact either 
author for copies thereof. 
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The numerical evidence based on these studies supports our belief that the underlying 
conjectures made in this paper are correct. However, statistical corroboration does not constitute 
mathematical proof, and proof is what is required to establish these conjectures rigorously. 

APPENDIX 1 
x = 15,485,863 ; %(x) = 1,000,01X1 

a 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

"otals for 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

i 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

16-21 

q = 2: 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10-12 

Totals for q = 3 

(1) 
M(q, x; j) _ j 
333,286 
333,329 
166,737 
83,216 
41,734 
20,8% 
10,460 
5,185 
2,591 
1,307 
626 
326 
152 
75 
47 
14 
19 

1.000.000 

625,126 
249,889 
83,271 
27,764 
9,331 
3,073 
1,028 
330 
138 
32 
18 

: 1.000.000 

(2) 
;(q;i) 
3333333 
3333333 
1666667 
0833333 
0416667 
0208333 
0104167 
0052083 
0026042 
0013021 
0006510 
0003255 
0001628 
0000814 
0000407 
.0000203 
.0000200 

6250000 
2500000 
0833333 
0277778 
0092593 
0030864 
0010288 
0003429 
.0001143 
.0000381 
.0000183 

(3) 
rc(x)-5(q;f) 

333,333 
333,333 
166,667 
83,333 
41,667 
20,833 
10,417 
5,208 
2,604 
1,302 
651 
326 
163 
81 
41 
20 
20 

999.999 

625,000 
250,000 
83,333 
27,778 
9,259 
3,086 
1,029 
343 
114 
38 
18 

999.998 

(4) = 

UlU3)V+(3) 
0.0066 
0.0000 
0.0294 
0.1643 
0.1077 
0.1905 
0.1775 
0.1016 
0.0649 
0.0192 
0.9601 
0.0000 
0.7423 
0.4444 
0.8780 
1.8000 
0.0500 

5.7365 

0.0254 
0.0493 
0.0461 
0.0071 
0.5599 
0.0548 
0.0010 
0.4927 
5.0526 
0.9474 
0.0000 

7.2363 
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APPENDIX 1 (continued) 

a 
5 
5 
5 
5 
5 
5 
5 
5 

Totals for q 

7 
7 
7 
7 
7 
7 

Totals for 

11 
11 
11 
11 
11 

Totals for 

i 
0 
1 
2 
3 
4 
5 
6 
7-8 

t = 5: 

0 
1 
2 
3 
4 
5-7 

q = 7 

0 
1 
2 
3 
4-5 

(1) 
M(q, x; ft 

791,679 
166,700 
33,272 
6,612 
1,3% 
278 
51 
12 

1.000.000 

854,407 
124,742 
17,907 
2,533 
356 
55 

: 1.000.000 

908,281 
83,400 
7,581 
676 
62 

q = 11:1.000.000 

(2) 

qq;i) 
.7916667 
.1666667 
.0333333 
.0066667 
.0013333 
.0002667 
.0000533 
.0000128 

.8541667 

.1250000 

.0178571 

.0025510 

.0003644 

.0000606 

.9083333 

.0833333 

.0075758 

.0006887 

.0000683 

SUMMARY 

(3) 
TC(x)-qq;i) 

791,667 
166,667 
33,333 
6,667 
1,333 
267 
53 
13 

1.000.000 

854,167 
125,000 
17,857 
2,551 
364 
61 

1.000.000 

908,333 
83,333 
7,576 
689 
68 

1.000.000 

(4) = 

U1U3W+J3) 
0.0002 
0.0065 
0.1116 
0.4537 
2.9775 
0.4532 
0.0755 
0.0769 

4.1551 

0.0674 
0.5325 
0.1400 
0.1270 
0.1758 
0.5902 

1.6329 

0.0030 
0.0539 
0.0033 
0.2453 
0.5294 

0.8349 

Grouped 
Values of q 

2,3 

5,7,11 

2,3,5,7,11 

Total x2 Value 
Number of Number of Chi-Square at 97.5% 

Values Data Points (n) Statistic Confidence 

2 

3 

28 

19 

47 

12.9728 14.5733 

6.6229 8.2308 

19.5957 27.60 
(est) 
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APPENDIX 1-SUMMARY (continued) 
Explanation: 
1. M(q,x; j) = 1EizoM(q,x;i + j , j) enumerates those primes p<x such that, for the given 

primes qJ\\Z(p). 
2. Column (2) is obtained from the formula given in (2.6)*. 
3. In the last data point for each q, values of M(q, x; j) were aggregated with preceding values, 

in some cases, so as to make the aggregated value 12 or more. This was done to minimize 
the distortion in the calculated value of the Chi Square statistic. For these entries, Columns 
(2) aind (3) reflect the sum of the values for the indicated values of j . 

4. The values of %2 at the 97.5% confidence level are taken from Handbook of Mathematical 
Functions with Formulas, Graphs, and Mathematical Tables, ed. M. Abramowitz & I. A. 
Stegun (National Bureau of Standards, 9th ptg., 1970). These values are read using n-\ as 
the degrees of freedom. 

5. In this Summary, the Chi Square statistic is less than the corresponding x2 value at the 
97.5% confidence level. This latter amount is the value at which the "tail" of the distribution 
function, for the indicated degrees of freedom, is .025. Therefore, on the basis of this test 
alone, we would accept the conjecture in (2.6)* involving # = 2,3,5,7, or 11, with 97.5% 
confidence. 
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