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1. INTRODUCTION

In [3], Todorov proved a theorem related to the explicit expression for Stirling numbers of
the second kind, S(n, m), in a very complicated way. In this paper, we shall prove that this result
is a consequence of the well-known representation of the Stirling numbers of the second kind.

Starting from the rational generating function for Stirling numbers of the second kind,
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If we identify coefficients of #” from equations (1) and (2), we get (see Aigner [1] or Comtet [2]):
S(n,m)= Z 1925 ..t
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This formula is identical to
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In this paper, we prove that Todorov's expression for Stirling numbers of the second kind (see
[3]) is a simple consequence of the representation (3).

1. THE MAIN RESULT

Let us take, in (3), the change of indices in the following way:
ii=j -5 (s=12,..,k). 4
Then, from 1<i, <i,, we have 2<i, +1<i, +1,ie, 2< j, < j, —1. Similarly, from
(Vse{l,2,....k}), s<i_ +s—1<i +s5-1,

using (4), we get
s<j,<Jj -1 (s=2,..,k).

For k =n—m, we obtain k+1< j, —(n-m)<m, i.e., k+1< j, <n. So, the sum on the right
side of the equality (3) is identical to
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n Ji—1 Ja—1 jp—1
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which is the result from [3].

Example: We use n=6, m=3, and k =n—-m=3. Following the change of indices from the

equality (4), we get i, = j, —1,i, = j, -2, and i; = j, —3. Then, from 1<i, <i, <i; <3, we have

2<j,£),-1,3<j,<j5-1,and 4< j; -3<3,ie,4< j;<6.

After these transformations, from formula (3) it follows that
$(6,3)=90= Y i
1<) iy <i3 <3

=1-1-1+1-1-2+1-1-3+1-2-2+1-2-3+1-3-3+2-2-2+2-2-34+2-3-3+3-3-3
=1-1-14+2-(1-1+2-1+2-2) +3-(1-14+2-1+2-2+3-1+3-2+3-3)

6 J3—1 jp-1
=3 > Y (G- -D,
J3=4 =3 j

=2

which is formula (5), where weuse n=6, m=3,and k =n-m=3.
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