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1. INTRODUCTION

Two classical problems in elementary number theory appear, at first, to be unrelated. The
first, posed by D. H. Lehmer in [7], asks whether there is a composite integer N such that ¢(N)
divides N —1, where @¢(N) is Euler's totient function. This question has received considerable
attention and it has been demonstrated that such an integer, if it exists, must be extraordinary.
For example, in [2] G. L. Cohen and P. Hagis, Jr., show that an integer providing an affirmative
answer to Lehmer's question must have at least 14 distinct prime factors and exceed 10%°.

The second is the ancient question whether there exists an odd perfect number, that is, an odd
integer &, such that o(N)=2N, where o(XN) is the sum of the divisors of N. More generally,
for each integer £ >1, one can ask for odd multiperfect numbers, i.e., odd solutions N of the
equation o(N)=kN. This question has also received much attention and solutions must be
extraordinary. For example, in [1] W. E. Beck and R. M. Rudolph show that an odd solution to
o(N)=3N must exceed 10*°. Moreover, C. Pomerance [9], and more recently D. R. Heath-
Brown [4], have found explicit upper bounds for multiperfect numbers with a bounded number of
prime factors.

In recent work [13], L. Somer shows that for fixed d there are at most finitely many com-
posite integers N such that some integer a relatively prime to N has multiplicative order
(N —1)/d modulo N. A composite integer N with this property is a Fermat d-pseudoprime. (See
[12], p. 117, where Fermat d-pseudoprimes are referred to as Somer d-pseudoprimes.) More
recently, Somer [14] showed that under suitable conditions, there are at most finitely many Lucas
d-pseudoprimes, i.e., pseudoprimes that arise via tests employing recurrence sequences. (Lucas
d-pseudoprimes are discussed on pp. 131-132 of [12] where they are also called Somer-Lucas d-
pseudoprimes. For a complete discussion of these and other pseudoprimes that arise from recur-
rence relations, see [12] or [11].)

The methods used by Somer in his papers motivated the present work. While attempting to
simplify and extend the arguments in [13] and [14] we discovered that, in fact, Lehmer's problem,
the existence of odd multiperfect numbers, and Somer's theorems about pseudoprimes are inti-
mately related. In this paper we present a unified approach to the study of these four questions.

2. PRELIMINARIES

We adopt the convention that p always represents a prime number. Define the set 6(N) =
{p| pdivides N} and for each i such that 1<i <|S(N)|, define §,(N) to the i™ largest prime in
the decomposition of N. Thus, if N has decomposition
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t
N=]]p", 2.1)
i=1

with p, < p, <---< p,, then §,(N) = p,. If Q is a set of natural numbers, define
6= UNena(N)
and, similarly, §,(Q) = {6,(N)|N € Q}.
In the arguments below we will have need to extract the square-free part of certain integers.
If N has decomposition (2.1), we will write

t t
N, =]]p and N,= Hp,.k"_l, 22)
i=1 i=1

so that N = N|N, with N, square-free.

In the definitions and lemmas below, we will need a semigroup homomorphism from the
natural numbers N to the multiplicative semigroup {—1,0, 1}. Such a function will be called a sig-
nature function, and we will single out the case in which &£ =1, the constant function. Clearly, a
signature function is determined by its values on the primes. We say that N is supported by ¢ if
&(N) #0 or, equivalently, if (p)#0 for all p that divide N. Similarly, a set Q of natural num-
bers is supported by ¢ if &(N)#0 for all N € Q. Note that if D is a fixed integer, the Jacobi
symbol £(i) = (£) is a signature function.

If N is any natural number and ¢ is a signature function, define the number theoretic function
&(N) as follows:

:(N>=55(N>=—;7H(p—s<p))' 23)

pIN

Note that if N has decomposition (2.1), we can write N = N|N, as in (2.2) and

=L ﬁ(n——a(p,-)]: 1 ﬁ(l_@} 24

N, ia i N, ia D;

We will be interested in certain limiting values of £(N) for Nin a set Q. In particular, if Q is
an infinite set of positive integers, then

lim §(N) =L 25)

means that for every &> 0 there is an M such that |£(N)—- L|< ¢ whenever N > M and N € Q.
Although in most applications the signature & will be fixed, we also allow & to vary with N,
requiring only that N be supported by its associated signature.

The following elementary lemma is an easy exercise.

Lemma 2.1: Suppose that Q is a set of positive integers and f:Q— R a function such that
lim . f(N)= L. Suppose as well that there exist functions f, and f,: Q — R such that

(@ f(N)=fi(N)f,(N) forall N € Q;

) {f,(N)|N e Q} has finite cardinality; and

(© limy.q A(N)=1

Then f,(N)= L for some N € Q.
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Lemma 2.2: If N >1 is an integer supported by the signature & and (c,d) is a pair of integers
such that £(N)=c/d, then (N,d) =1.

Proof: If £(N)=c/d, then
dl[(p-e(@)=cN.

pIN
Since N is supported by ¢, it follows that £(p) # 0 for all p dividing N. Thus, if p is the largest
prime divisor of N, then p|d. U

Theorem 2.3: Suppose that Q is an infinite set of positive integers with each N € Q supported
by corresponding signature ¢ and for which |6(N)|=¢ for all N € Q. Suppose as well that
{N,|N € Q} is bounded. If ¢ and d are integers such that (N, d) =1 for all N € Q and

]{,igng‘f(N):c/d, (2.6)

then c=d.

Proof: 1f 5,(Q) is bounded, then §() is bounded. Since {N, |N € Q} is bounded, it fol-
lows from (2.4) that £(N) takes on finitely many values as N ranges over ). It follows that
lim o &(N) = &(NV,) for some N, € Q, and &(N,) =c/d, contrary to Lemma 2.2.

Consequently &,(Q) is unbounded. Choose s to be minimal such that & (€2) is unbounded.
Since §,(Q) is unbounded, we can find an infinite subset of £ such that & () is increasing and,
without loss of generality, we may replace {2 with this subset. Now, if

i=s

then
lim fi(N)=1. @7

Since &, (Q) is bounded for all £ <5 and {N, | N € Q} is bounded, it follows that

1 £EL5(N)-e(8,(N) .
—H I L ifs>1

=M A 2.8)
NLZ ifs=1

takes on finitely many values. Since, in both cases, &(N) = fi(V)f,(N), Lemma 2.1 implies that
f,(N)=c/d for some N € Q. If s> 1, it follows that

s—1 s—1
d[](6,(\) - &(5,(W)) = eV, [ [6,(). (2.9)
i=1 i=1
But then §,_,(N) divides d, contrary to the hypothesis that (N,d)=1. It now follows thats=1.

But then Lemma 2.1 implies that d = cN, for some N € Q. Since (N,,d) =1 for all N € Q, this
implies that N, =1 and c=d, as desired. O
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Corollary 2.4: Suppose that Q is an infinite set of positive integers that is supported by the sig-
nature ¢ and for which {|6(N)|}y .q is bounded. Suppose as well that {N, | N € Q} is bounded.
If ¢ and d are integers such that (¥,d)=1forall N € Q and

lim §(N) =c/d, (2.10)

then c=d.

Proof: If Q is infinite and {|6(N)|}y o is bounded, then there is some integer # such that
Q= {N € Q|t=|6(N)|} is infinite. We can now apply Theorem 2.3 to Q.o

3. FERMAT PSEUDOPRIMES

Suppose that N is a composite integer and a >1is an integer such that (N,a)=1 and
a’1'=1 (mod N). Then N is called a Fermat pseudoprime to the base a. Moreover, if a has
multiplicative order (N -1)/d in (Z/ NZ)*, then N is said to be a Fermat d-pseudoprime to the
base a. In general, if there exists an integer a > 1 such that & is a Fermat d-pseudoprime to the
base a, then we call N a Fermat d-pseudoprime.

If N has prime decomposition (2.1), then the structure of the unit group (Z/ NZ)* is well
known. If N is not divisible by 8, then (Z/NZ)" is a product of cyclic groups of order
piY(p, 1), while if N is divisible by 8, then p, =2 and (Z/ NZ)* has an additional factor that is
a product of a cyclic group of order 2 and a cyclic group of order 2¥=2_ Tt follows that the mul-
tiplicative orders of integers a relatively prime to N in (Z/ NZ)® are just the divisors of A(N)=
lem{pj(p,— 1)}, where 5, =k, —1 when p, is odd, s;=k —11if p;=2 and k, =1 or 2, and s, =
k,—2 if py=2 and k, >3. Therefore N is a Fermat d-pseudoprime if and only if (N -1)/d
divides A(N). Moreover, since (N, N —1) =1, a composite integer N is a Fermat d-pseudoprime
if and only if (N —1)/d divides A'(N) =lem{p, —1}.

If N has decomposition (2.1), define

v =511 -0,
i=1

where s=¢—2 when 2|N and7>2, and s=7—-1 otherwise. It is easy to see that if N is com-
posite, then w(V) is an integer and A'(N) divides w(N). Therefore, if ¥ is a Fermat d-pseudo-
prime, then (N —1)/d divides w(N), and hence, there is an integer ¢ such that

—Kfé? =<, (.1)

We will need several lemmas concerning the properties of Fermat d-pseudoprimes and y(N).
Similar lemmas appear in [13], but the proofs are short and we include them here for complete-
ness.

Lemma 3.1: If N is a Fermat d-pseudoprime with prime decomposition (2.1), then (N, d) =1 and
there exists an integer ¢ such that
y(N)

1
N—-1 <2—t_—1—. (32)

Qle
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Proof: If t =1, then (3.2) follows immediately from the definition of w() and the fact that
N is composite. Assume that 7> 1. By (3.1) and the preceding comments, it suffices to show that
c/d <1/2"1. This is immediate from the observation that

[I@-

pIN
Hp—l <1
pIN

in general, and

[e-D

pIN <=
Hp -1 2
pIN

when 2|N. O
Lemma 3.2: If N is a Fermat d-pseudoprime with prime decomposition (2.1), then ¢ < log,(d) +1.

Proof: By Lemma 3.1,
d d 2t—1 4

and hence d >2""'. Thus 7 —1< log,(d), and therefore 7 < log,(d) +1. O

Lemma 3.3: If N is a Fermat d-pseudoprime with prime decomposition (2.1) and &, > 2, then

ph
pf.-—1<p_'_lsd+1. (3.3)

1

Proof: Clearly,

copy 1 MpY 1( N
i< Il-5 = ol v ='—;(“““)
Jj=1 pj_l 2 z_sH(Pj_l) 2 '//(N)

_1(N-1 1 _1(d 1
7 (.,,(N))+ 2y(N) 2 ()+ 2y()

s-—+——:%(d+l)sd+l. a

The following theorem first appeared in [13].

Theorem 3.4: For fixed positive integer d, there are at most a finite number of Fermat d-pseudo-
primes.

Proof: By way of contradiction, suppose that there are an infinite number of Fermat d-
pseudoprimes. By Lemma 3.2, there exists an integer #, with ¢ < log,(d) +1, such that an infinite
number of these Fermat d-pseudoprimes have exactly ¢ distinct prime divisors. Moreover, an
infinite number of these Fermat d-pseudoprimes have the same parity. Then (3.2) is satisfied by
an infinite number of integers NV of the same parity. There are, however, only a finite number of
possible values for ¢, and it follows that there is some value of ¢ for which (3.2) has an infinite
number of solutions N of the same parity. Fix this value of ¢ and let Q be an (infinite) set of
positive integers N of the same parity that satisfy (3.2) for these fixed values of ¢ and d.

1998] 365



PSEUDOPRIMES, PERFECT NUMBERS, AND A PROBLEM OF LEHMER

If 6(Q2) is bounded, then, by Lemma 3.3, Q is finite, contrary to our choice of c. Conse-
quently §(Q) is unbounded. Moreover, by Lemma 3.2, {|6(N)|}ycq is bounded, and it follows

that
1

fm =Y

Consequently, with constant signature £=1, and s=7-2 if the elements of ) are even and
t>2 and s=1—1 otherwise, we obtain

Ze_ 55 lim (M) = 25 lim L

d NeQ\ N -1 Neﬂ(%)
(3.4)
=2 fim =2 lim (M) = lim &)
Neﬁ(m—m) NeQ

By Lemma 3.3, {N,|N € Q} is bounded and, by Lemma 3.1, (N,d)=1 for all N € Q.
Clearly, Q is supported by the constant signature £=1. Therefore Theorem 2.3 implies that
2’c/d=1.

Finally, by (3.2),

2°c 2°

d < 2t—1

<1, (3.5)

a contradiction. O

4. LUCAS PSEUDOPRIMES
Let U(P, Q) be the recurrence sequence defined by U, =0, U, =1, and
Un+2 = PUn+1 - QUn (4 1)

for all n>0. The sequence U(P, Q) is called a Lucas sequence with parameters P and Q. Asso-
ciated with U(P, Q) is an integer D = P*>—4(Q known as the discriminant of U(P, Q) and, as
noted above, the function (i) = (2) is a signature function. For the duration of this section, &(N)
will be the Jacobi symbol.

If N is an integer and U(P, J) a Lucas sequence, we define p,,(N) to be the least positive
integer n such that N divides U,. The number p(XN) is called the rank of appearance (or simply
the rank) of N in U(P, Q). If (N, Q) =1, then it is well known that U(P, Q) is purely periodic
modulo N and, since U, =0, p(N) exists. Moreover, in this case U, =0 (mod N) if and only
if p(N) divides n. It was proven by Lucas [8] that, if a prime p does not divide 20D, then
U, =0 (mod p) and hence p(p) divides p—&(p).

Motivated by Lucas' theorem, we say that an odd composite integer N is a Lucas pseudo-
prime if there is a Lucas sequence U(P, Q) with discriminant D such that (N,0OD)=1 and
Upy—eny =0 (mod N), where £(N) =(£). Moreover, if p(N)=(N —&(N))/d, then N is said to
be a Lucas d-pseudoprime.

Suppose that & is any signature function and N an odd integer with decomposition (2.1) that
is supported by ¢. Analogous to the functions 4, A’, and y defined in the previous section,
define
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A(N) =lem{p}!(p, - &(p))},
A'(N) =lem{p, — &(p;)}, and

v =511~ 2))

In [14], L. Somer shows that an integer N is a Fermat d-pseudoprime if and only if it is a
Lucas d-pseudoprime with a signature & satisfying &(p) =1 for all primes p dividing N. Since for
each d there are only a finite number of Fermat d-pseudoprimes, it may seem reasonable to con-
jecture that there are also a finite number of Lucas d-pseudoprimes. This conjecture seems highly
unlikely, however, since d-pseudoprimes with three prime divisors and d divisible by 4 are easy to
construct.

If k is an even integer with the property that p =3k —1, ¢ =3k +1, and r = 3k? — 1 are prime,
set N = pgr and choose D relatively prime to N and congruent to 0 or 1 (mod 4) such that
&g(p)=1and &(q) = &(r) =-1. Then

N -&(N)=pgr-1=Ck-DBk+1D)Bk*-1)-1
=3k*(9k* - 4) = (3k - 2)(3k + 2)(3k?)
=(p-D@+Dr+D.

It is a consequence of elementary properties of Lucas sequences and a theorem of H. C.
Williams [15] that for any odd integer NV and discriminant D relatively prime to & and satisfying
D =0 or 1 (mod 4), there is a Lucas sequence U satisfying o, (N)= A(N). Thus, for

__ (@-D@+hr+)  N-¢&N)
Tlem(p-0D),(g+1),(r+1) AN)

Williams' theorem implies that N is a Lucas d-pseudoprime. Since p—1,g+1, and r +1 are all
even, it is clear that d is divisible by 4, and when A(N) is maximal, d =4. For example, taking
k =4 yields the Lucas 4-pseudoprime N =11-13-47 = 6721 and & = 60 yields the 4-pseudoprime
N =179-181-10799 = 349876801

More general algorithms for generating Lucas d-pseudoprimes are described in [14] and will
be discussed in detail in a future paper. It is worth noting that the computational evidence pre-
sented in [14] suggests that there are infinitely many Lucas d-pseudoprimes with exactly three
distinct prime divisors when 4 divides d and d is a square, and that there is a relationship between
the number of Lucas d-pseudoprimes N, the precise power of 2 that divides d, and the number of
prime divisors of N. We prove below that there are at most a finite number of Lucas d-pseudo-
primes N such that 2| N and |§(N)|=r+2. In light of the computational evidence presented in
[14], the requirement that |5(V)|>r +2 appears to be best possible.

As in the previous section, we require a few lemmas that describe properties of Lucas d-
pseudoprimes and y(N). The following three lemmas can be proved by methods analogous to
those used to prove Lemma 3.1, Lemma 3.2, and Lemma 3.3.

Lemma 4.1: If N is a Lucas d-pseudoprime, then (N, d) =1 and there exist integers b and ¢ such

that
AMN) _b v(N) ¢ 2Y
N—é:(IV)"a'S N—s(N)_d<2(3)’ (4.2)
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Lemma 4.2: If N is a Lucas d-pseudoprime with prime decomposition (2.1), then 7 <log,,,(2d).
Lemma 4.3: If N is a Lucas d-pseudoprime with prime decomposition (2.1) and &, > 2, then
Pl <22/3)(d +1). 4.3)
The following theorem is new; it sharpens a result of the third author in [14].

Theorem 4.4: Let d be a fixed positive integer and suppose that 2" exactly divides d. Then there
are at most a finite number of Lucas d-pseudoprimes N such that [§(N)|>r +2.

Proof: Suppose that there are an infinite number of Lucas d-pseudoprimes N with [6(V)|=
r+2. By Lemma 4.2, there exists an integer #, with r +1 <t <log,,,(2d), such that an infinite
number of these Lucas d-pseudoprimes have exactly 7 distinct prime divisors. Thus (4.2) is
satisfied by an infinite number of integers N. There are, however, only a finite number of possible
values for ¢, and it follows that there is some value of ¢ for which (4.2) has an infinite number of
solutions N. Fix this value of ¢ and let {2 be the (infinite) set of positive integers N that satisfy
(4.2) for these fixed values of c and d.

If 6(QY) is bounded, then, by Lemma 4.3, Q is finite, contrary to our choice of ¢. Conse-
quently 5(€2) is unbounded. Moreover, by Lemma 4.2, {|6(N)|}, o is bounded and it follows
that

fim £ _ ¢
Nea y(N)
It then follows that
27l w(N) Y o1y
PR - V) Rl A EE
-l 1 At [N
=2 lelé%(L_dN))‘zt ,\1}3;’:( N7 hm o).
V(D v (@)

4.4)

By Lemma 4.3, {N,|N € Q} is bounded and, by Lemma 4.1, (N,d)=1 for all N € Q.
Moreover, since &(N) = (—]137) and, by definition of Lucas d-pseudoprime, (D, N) =1, it follows
that Q is supported by &. Therefore Theorem 2.3 implies that 2'c/d=1. Thus d =2""c.
Since 2" exactly divides d, the hypothesis that #>r+1 implies that r>7—-1>(r+1)—1=r, a
contradiction. O

The following two corollaries are stated in [14].

Corollary 4.5: 1f d is odd, then there are at most finitely many Lucas d-pseudoprimes.

Proof: Theorem 4.4 handles the case in which N has at least 2 distinct prime divisors and
Lemma 4.3 handles the case in which N is a prime power. [J
Corollary 4.6: If 2 exactly divides d, then there are at most finitely many Lucas d-pseudoprimes.

Proof: Suppose otherwise and fix d such that d =2 (mod 4) and there are infinitely many
d-pseudoprimes N. Then, by Theorem 4.4 and Lemma 4.3, there are infinitely many d-pseudo-
primes with |6(N)|=2. By Lemma 4.1 and the argument in the proof of Theorem 4.4,

yN) _1.
N_e(V) 2’ (.5)
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and hence, if N has decomposition (2.1),

(P - 5(512)2@2\, ; @) _ 1 (4.6)

If either k, > 1 or k, > 1, then

@~ e@))(p, - &(py)) _ (2 — @), — &(py)

N - &(N) PP Pl — e(N)
“4.7
<@ +D(P+D) _ B+DG+D) _24
- pip,-1 T 9-5-1 44 "
a contradiction. Therefore k; = &, =1.
It now follows that
(21— @), - (1) = v, — 6(P)&(py), and “8)
PE(py) + pre(py) = 26(p)e(py). .
If e(p) = e(p,), then p, + p, = £2, which is impossible. Hence, &(p,) = —&(p,).
Since p, > p,, it now follows that p, — p, =2, i.e,, p, and p, are twin primes.
Now, by Lemma 4.1,
b_ A(N) _lem{p+D),(p+2-1)} 1 4.9)

d N-&N) p(p+2)+1 T p U
It follows that d = (p, +1). Clearly, there are only finitely many prime twins p, and p, +2 such
that p, +1 divides d. This final contradiction completes the proof of the corollary. [
5. LEHMER'S PROBLEM

In [7], D. H. Lehmer asks whether there exist composite integers N such that ¢() divides
N —1. If N has prime decomposition (2.1), then

-1
p(N) = NI 5.1)
pin P

Consequently, if dg(N) = N —1, it follows that

aNTT(-1D=-D]]p, (5.2)
PIN PIN
and therefore
dV,[(p-D=(N-). (5.3)
pIN

Since (N, N —1) =1, this implies that N, =1, i.e., N is square-free.
The following theorem was first proven by C. Pomerance in [10].

Theorem 5.1: For any integers #>1 and d >1, there are at most a finite number of integers
N >2 such that d¢(N)= N —1 and |6(N)|<t.
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Proof: Fix positive integers 7 and d, and let Q be the set of all positive integers N such that
dp(N)= N -1 and |§(N)|<t. By way of contradiction, assume that Q has infinite cardinality.

It follows from the hypotheses that (N,d) =1 for all N € Q and, from the remarks above,
that N is square-free. Moreover, since ¢(N) is even for N greater than 2, every element of Q is
odd.

It now follows for each N € Q that §(N)/(N-1)=1/d. As in the previous sections,
replacing Q with a subset if necessary, we obtain

-0 S0 JED_ e s,

It now follows from Corollary 2.4 that d =1, a contradiction. [

6. PERFECT NUMBERS

If N is a positive integer, define o(/NV) to be the sum of the positive divisors of N. A positive
integer N is called a perfect number if o(N)=2N. It is well known that every even perfect num-
ber is a Euclid number, i.e., an integer of the form 2"(2"'—1), where 2" —1 is a Mersenne
prime. Moreover, it is well known that every odd perfect number can be written in the form
N = pM? for some integer M > 1. Tt follows that 6 is the only square-free perfect number.

Recall that if N has decomposition (2.1), then

Pk’H -1

o(N)= 6.1
e
If N is square-free, then (6.1) becomes
2
-1
o(W)=[12==TT(w+n=NeWV), (6.2)
pIN pIN

where the signature function ¢ is given by &(p) = -1 for all primes p. Thus, for N square-free, N
is a perfect number if and only if

sN)=2. (6.3)
More generally, we can ask for square-free k-perfect integers &, that is, solutions N of
SWN)=k. (6.4)

L. E. Dickson [3] and L. S. Gradstein [5] have both proven that there are only a finite number
of odd perfect numbers N with |§(V)| bounded, and Dickson [3] generalized this result to primi-
tive abundant numbers. H.-J. Kanold [6] has studied (6.4) for k rational, and proved that there
are only finitely many primitive (and hence only finitely many odd) solutions NV with a fixed num-
ber of prime factors. As mentioned in the introduction, these results have recently been general-
ized by Pomerance [9] and D. R. Heath-Brown [4]. Here we apply the methods developed above
to prove a similar result for multiperfect numbers.

Theorem 6.1: For fixed k and ¢, there exist at most finitely many square-free integers N such that
|0(N)|<t and
o(N)=kN. 6.5)
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Proof: By the remarks preceding the theorem, the condition o(N)=kN is equivalent to

S(N)=k. Let Q={N|&N)=k,|6(N)|<t, and N is square-free}. By way of contradiction,
suppose that ) has infinite cardinality. Since each N € Q is square-free, {N,|N € Q} is
bounded. It is clear that Q satisfies the hypotheses of Corollary 2.4, and we conclude that k£ =1.
But, clearly, o(N) > N +1> kN, a contradiction. [

9.
10.

11.
12.

13.
14.

15.
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