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1. INTRODUCTION 

Two classical problems In elementary number theory appear, at first, to be unrelated. The 
first, posed by D. H. Lehmer in [7], asks whether there is a composite integer N such that </>{N) 
divides N-l, where &(N) is Euler's totient function. This question has received considerable 
attention and it has been demonstrated that such an integer, if it exists, must be extraordinary. 
For example, in [2] G. L. Cohen and P. Hagis, Jr., show that an integer providing an affirmative 
answer to Lehmer's question must have at least 14 distinct prime factors and exceed 1020. 

The second is the ancient question whether there exists an odd perfect number, that is, an odd 
integer N, such that a(N) = 2N, where a(N) is the sum of the divisors ofN. More generally, 
for each integer k>l, one can ask for odd multiperfect numbers, i.e., odd solutions N of the 
equation <j(N) = kN. This question has also received much attention and solutions must be 
extraordinary. For example, in [1] W. E. Beck and R. M. Rudolph show that an odd solution to 
a(N) = 3N must exceed 1050. Moreover, C. Pomerance [9], and more recently D. R. Heath-
Brown [4], have found explicit upper bounds for multiperfect numbers with a bounded number of 
prime factors. 

In recent work [13], L. Somer shows that for fixed d there are at most finitely many com-
posite integers N such that some Integer a relatively prime to N has multiplicative order 
{N -1)1 d modulo N. A composite Integer N with this property Is a Fermat ^-pseudoprime. (See 
[12], p. 117, where Fermat rf-pseudoprimes are referred to as Somer ^-pseudoprimes.) More 
recently, Somer [14] showed that under suitable conditions, there are at most finitely many Lucas 
*f-pseudoprimes, I.e., pseudoprimes that arise via tests employing recurrence sequences. (Lucas 
tf-pseudoprimes are discussed on pp. 131-132 of [12] where they are also called Somer-Lucas d-
pseudoprimes. For a complete discussion of these and other pseudoprimes that arise from recur-
rence relations, see [12] or [11].) 

The methods used by Somer In his papers motivated the present work. While attempting to 
simplify and extend the arguments in [13] and [14] we discovered that, in fact, Lehmer's problem, 
the existence of odd multiperfect numbers, and Somer's theorems about pseudoprimes are inti-
mately related. In this paper we present a unified approach to the study of these four questions. 

2. PRELIMINARIES 

We adopt the convention that p always represents a prime number. Define the set 8{N) = 
{p | pdivides N} and for each i such that 1 < i < \S(N)\, define S^N) to the Ith largest prime in 
the decomposition ofN. Thus, If N has decomposition 
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* = IW. (2.1) 
/=1 

with Pi<p2<"'<Pt> ^en 8i (N) = p{. If O is a set of natural numbers, define 

and, similarly, ^(Q) = {£,(#) | # € Q}. 
In the arguments below we will have need to extract the square-free part of certain integers. 

If N has decomposition (2.1), we will write 

N^UP, and N2=Y[pf-\ (2.2) 
7=1 1=1 

so that N = NXN2 with Nx square-free. 
In the definitions and lemmas below, we will need a semigroup homomorphism from the 

natural numbers N to the multiplicative semigroup {-1,0,1}. Such a function will be called a sig-
nature function, and we will single out the case in which s = 1, the constant function. Clearly, a 
signature function is determined by its values on the primes. We say that N is supported by s if 
s(N) ^ 0 or, equivalently, if s(p) * 0 for all p that divide N. Similarly, a set H of natural num-
bers is supported by e if e(N) ^ 0 for all N e H. Note that if D is a fixed integer, the Jacobi 
symbol s(i) = (y) is a signature function. 

If iVis any natural number and s is a signature function, define the number theoretic function 
%(N) as follows: 

£(AT) = Zs(N) = ±]I(p-e(p)). (2.3) 
N p\N 

Note that if N has decomposition (2.1), we can write N = NXN2 as in (2.2) and 

"2 i=l . Pi . N, n 
2 >=1 

( 
1 e{Pd 

Pi 

We will be interested in certain limiting values of £(N) for N in a set Q.. 
an infinite set of positive integers, then 

lim 4(JV) = L 
JfeQ 

(2.4) 

In particular, if Q is 

(2.5) 

means that for every s>0 there is anMsuch that |£(W)-L\<e whenever N >M and N e Q. 
Although in most applications the signature s will be fixed, we also allow s to vary with N, 
requiring only that N be supported by its associated signature. 

The following elementary lemma is an easy exercise. 

Lemma 2.1: Suppose that Q is a set of positive integers and / : Q ^ R a function such that 
limNeQf(N) = L. Suppose as well that there exist functions fx and f2: H -^ R such that 
(a) f(N) = /l(N)f2(N) for all Ned; 
(b) {f2(N) | N G fi} has finite cardinality; and 
(c) limNenfl(N) = l. 
Then f2(N) = L for some TV e O. 
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Lemma 2.2: If N > 1 is an integer supported by the signature s and (c, d) is a pair of integers 
such that %(N) = c/d, then (N, d) * 1. 

Proof: If £(N) = c/d,then 

d]J(p-£(p)) = cN. 
p\N 

Since N is supported by s, it follows that e(p) * 0 for all p dividing N. Thus, ifp is the largest 
prime divisor of TV, then p\d. 0 

Theorem 23: Suppose that O is an infinite set of positive integers with each N G CI supported 
by corresponding signature £ and for which \S(N)\=t for all N e CI. Suppose as well that 
{N2 | # G O } is bounded. If c and dare integers such that (N, d) = l for all TV G fl and 

lim^(#) = c/rf, (2.6) 

then c = J . 

Proof: If St(Cl) is bounded, then <5(Q) is bounded. Since {N2 \N G CI} is bounded, it fol-
lows from (2.4) that £(N) takes on finitely many values as N ranges over O. It follows that 
XimNsQ^{N) = g(N0) for some N0 G O, and %(N0) -cl'd, contrary to Lemma 2.2. 

Consequently 8t(Cl) is unbounded. Choose s to be minimal such that 8S(C1) is unbounded. 
Since 8S(C1) is unbounded, we can find an infinite subset of O such that SS(N) is increasing and, 
without loss of generality, we may replace CI with this subset. Now, if 

then 
l im/,(#) = 1. (2.7) 

Since Sk(Cl) is bounded for all k < s and {N2 \ N G O} is bounded, it follows that 

s-l 

MN) = 
1 fU(AQ-£(<?,(AQ) 

if 5=1 

N2i\ S,(N) ( 2 8 ) 

N2 

takes on finitely many values. Since, in both cases, Z(N) = f\{N)f2{N), Lemma 2.1 implies that 
f2(N) = c/d for some N e Q. If 5 > 1, it follows that 

dfliS^N) - 6{dt{N))) = cN2X\St(N). (2.9) 
/=1 1=1 

But then 8S_X(N) divides d, contrary to the hypothesis that (N, d) = l. It now follows that s = l. 
But then Lemma 2.1 implies that d = cN2 for some N G O. Since (N2, d) = 1 for all N G O, this 
implies that 7V2 = 1 and c - d, as desired. D 
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Corollary 2.4: Suppose that Q is an infinite set of positive integers that is supported by the sig-
nature s and for which {\8(N)\}NeQ is bounded. Suppose as well that {TV2 | TV e £2} is bounded. 
If c and d are integers such that (TV, d) = l for all TV e O and 

lim£(TV) = c / J , (2.10) 
NeQ 

then c-d. 
Proof: If O is infinite and {\8{N)\}NE£1 is bounded, then there is some integer t such that 

fl = {TV G n 11 = \S(N)\} is infinite. We can now apply Theorem 2.3 to fl. • 

3. FERMAT PSEUDOPRIMES 

Suppose that TV is a composite integer and a > 1 is an integer such that (TV, a) = l and 
aN~l = 1 (mod TV). Then TV is called a Fermat pseudoprime to the base a. Moreover, if a has 
multiplicative order (TV -1) Id in (Z / TVZ)*, then TV is said to be a Fermat d-pseudoprime to the 
base a. In general, if there exists an integer a > 1 such that TV is a Fermat rf-pseudoprime to the 
base a, then we call TV a Fermat <f-pseudoprime. 

If TV has prime decomposition (2.1), then the structure of the unit group (Z/TVZ)* is well 
known. If TV is not divisible by 8, then (Z / TVZ)* is a product of cyclic groups of order 
pf'~~l(Pi ~ 1) > while if TV is divisible by 8, then px = 2 and (Z / TVZ)* has an additional factor that is 
a product of a cyclic group of order 2 and a cyclic group of order 2kl~2. It follows that the mul-
tiplicative orders of integers a relatively prime to TV in (Z / TVZ)* are just the divisors of A(N) -
Icmj/^'Xp, -1)}, where si = kf-l when pt is odd, sl = kl-l if px = 2 and kx = l or 2, and ^ = 
kx -2 if £\ = 2 and ^ > 3. Therefore TV is a Fermat ^-pseudoprime if and only if (N-l) Id 
divides X{N). Moreover, since (TV, TV -1) = 1, a composite integer TV is a Fermat af-pseudoprime 
if and only if (TV -1) / d divides X'(N) = lcm{# -1}. 

If TV has decomposition (2.1), define 

where s=t-2 when 2|7V and £ > 2, and s = t -1 otherwise. It is easy to see that if TV is com-
posite, then y/(N) is an integer and /I'(TV) divides i/s(N). Therefore, if TV is a Fermat <f-pseudo-
prime, then (N-l)/d divides y/(N), and hence, there is an integer c such that 

J ^ = £ (3 1) 
TV-1 d' { ' } 

We will need several lemmas concerning the properties of Fermat <i-pseudoprimes and y/(N). 
Similar lemmas appear in [13], but the proofs are short and we include them here for complete-
ness. 

Lemma 3.1: If TV is a Fermat <f-pseudoprime with prime decomposition (2.1), then (TV, d) = 1 and 
there exists an integer c such that 

<^> = £ < - L (3 2) 
N-l d 2'-1' K } 
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Proof: If t = 1, then (3.2) follows immediately from the definition of y/(N) and the fact that 
Nis composite. Assume that t>\. By (3.1) and the preceding comments, it suffices to show that 
eld < 1 /2'"1. This is immediate from the observation that 

m <i 

p\N 

in general, and 

P\N 1 

n^-i 2 
p\N 

when 21N. U 

Lemma 3.2: If Nis a Fermat rf-pseudoprime with prime decomposition (2.1), then t < log2(rf) +1. 

Proof: By Lemma 3.1, 

d ~ d < 2'"1' 

and hence d > 2f~l. Thus t -1 < log2(^)3 and therefore f < log2(</) +1. • 

Lemma 33: UN is a Fermat *f-pseudoprime with prime decomposition (2.1) and kt > 2, then 
k 

Pt'-l<j^l^d + \. (3.3) 

Proof: Clearly, 
t pk.J x( YlnkJ \ i f 

*H< n^y tnov-i) 
i # 

^ ) 

=±r^+_i_=±r^+_j__ 
2 5 V r W j 2>(7V) 2s \c) Ty/(N) 

^ —+ —= —(rf + l)^€/ + l. D 
2' 25 25 

The following theorem first appeared in [13]. 

Theorem. 3.4: For fixed positive integer d, there are at most a finite number of Fermat <f-pseudo-
primes. 

Proof: By way of contradiction, suppose that there are an infinite number of Fermat d-
pseudoprimes. By Lemma 3.2, there exists an integer t, with t < log2(d) +1, such that an infinite 
number of these Fermat if-pseudoprimes have exactly t distinct prime divisors. Moreover, an 
infinite number of these Fermat J-pseudoprimes have the same parity. Then (3.2) is satisfied by 
an infinite number of integers TV of the same parity. There are, however, only a finite number of 
possible values for c, and it follows that there is some value of c for which (3.2) has an infinite 
number of solutions N of the same parity. Fix this value of c and let O be an (infinite) set of 
positive integers N of the same parity that satisfy (3.2) for these fixed values of c and d. 
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If S(Q) is bounded, then, by Lemma 3.3, O is finite, contrary to our choice of c. Conse-
quently S(Q) is unbounded. Moreover, by Lemma 3.2, {\S(N)\}NeC1 is bounded, and it follows 
that 

NeQy/(N) 

Consequently, with constant signature s = l, and s-t-2 if the elements of Q are even and 
t >2, and s = t-l otherwise, we obtain 

^ _ 2 M i m f ^ W l i m ^ -
d ~2 N?o{N-l)~ "™(4^) 

r ( 7 0.4) 
= 2s lim , 1 . = 2' limf ^p-) = lira ft/V). N*a(im-^Nj) NeQ^ N J NeQ' 

By Lemma 3.3, {N2 \N e £2} is bounded and, by Lemma 3.1, (N,d) = 1 for all N e CI. 
Clearly, Q, is supported by the constant signature e = l. Therefore Theorem 2.3 implies that 
2scld=\. 

Finally, by (3.2), 

a contradiction. D 

2sc 2s 

4. LUCAS PSEUDOPRIMES 

Let U(P, Q) be the recurrence sequence defined by U0 = 0, Ux = 1, and 

Un,2 = PUn¥l-QUn (4.1) 

for all w > 0. The sequence U(P, Q) is called a I^cos sequence with parameters P and 2- Asso-
ciated with U(P, Q) is an integer D = P2-4Q known as the discriminant of U(P, Q) and, as 
noted above, the function s{i) = (y) is a signature function. For the duration of this section, s(N) 
will be the Jacobi symbol. 

If Nis an integer and U(P9 Q) a Lucas sequence, we define pn{N) to be the least positive 
integer n such that TV divides Un. The number p(N) is called the rank of appearance (or simply 
the rank) of TV in U(P, Q). If (TV, 0 = 1, then it is well known that U(P, Q) is purely periodic 
modulo TV and, since U0 = 0, p(TV) exists. Moreover, in this case Un = 0 (mod TV) if and only 
if p(N) divides n. It was proven by Lucas [8] that, if a prime p does not divide 2QD, then 
Up-e^p) = 0 (mod/?) and hence p(p) divides p- e(p). 

Motivated by Lucas' theorem, we say that an odd composite integer TV is a Lucas pseudo-
prime if there is a Lucas sequence U(P, Q) with discriminant D such that (TV, QD) = 1 and 
UN-£(N) = 0 (mod TV), where s(N) = (f). Moreover, if p(TV) = (TV - s{N))ld, then TV is said to 
be a Lucas d-pseudoprime. 

Suppose that s is any signature function and TV an odd integer with decomposition (2.1) that 
is supported by s. Analogous to the functions X9X\ and y/ defined in the previous section, 
define 

366 [AUG. 



PSEUDOPRIMES, PERFECT NUMBERS, AND A PROBLEM OF LEHMER 

A(N) = lcm{p*>-Xpi-e(j>i))}, 
A'(N) = lcm{pi-e(Pi)},and 

W{N) = 1^f[{pi-8{pi)). 

In [14], L. Somer shows that an integer N is a Feraiat J-pseudoprime if and only if it is a 
Lucas </-pseudoprime with a signature e satisfying e(p) = 1 for all primes/? dividing N. Since for 
each d there are only a finite number of Fermat if-pseudoprimes, it may seem reasonable to con-
jecture that there are also a finite number of Lucas J-pseudoprimes. This conjecture seems highly 
unlikely, however, since rf-pseudoprimes with three prime divisors and d divisible by 4 are easy to 
construct. 

If k is an even integer with the property that p = 3k-l, q = 3k + l, and r - 3k2 -1 are prime, 
set N = pqr and choose D relatively prime to N and congruent to 0 or 1 (mod 4) such that 
e(p) = 1 and s(q) - sir) - - 1 . Then 

N-s(N) = pqr-l = (3k-l)(3k +1)(3&2 - 1 ) - 1 
= 3k2(9k2 -4) = (3k - 2)(3k + 2)(3k2) 
= (p-l)(q + l)(r + l). 

It is a consequence of elementary properties of Lucas sequences and a theorem of H. C. 
Williams [15] that for any odd integer N and discriminant D relatively prime to N and satisfying 
D = 0 or 1 (mod 4), there is a Lucas sequence [/satisfying Pu(N) = X(N). Thus, for 

(p-l)(g + lXr + l) =N-e(N) 
lcm(p-l),fo + l),(r + l) HN) ' 

Williams' theorem implies that N is a Lucas if-pseudoprime. Since p-l,q + l, and r + l are all 
even, it is clear that d is divisible by 4, and when A(N) is maximal, d = 4. For example, taking 
k = 4 yields the Lucas 4™pseudoprime 7V = ll-13-47 = 6721 and k = 60 yields the 4-pseudoprime 
#=179-18140799 = 349876801. 

More general algorithms for generating Lucas J-pseudoprimes are described in [14] and will 
be discussed in detail in a future paper. It is worth noting that the computational evidence pre-
sented in [14] suggests that there are infinitely many Lucas rf-pseudoprimes with exactly three 
distinct prime divisors when 4 divides d and d is a square, and that there is a relationship between 
the number of Lucas rf-pseudoprimes N, the precise power of 2 that divides d, and the number of 
prime divisors ofN. We prove below that there are at most a finite number of Lucas J-pseudo-
primes N such that 2r \\N and \S(N)\ > r + 2. In light of the computational evidence presented in 
[14], the requirement that \S(N)\>r + 2 appears to be best possible. 

As in the previous section, we require a few lemmas that describe properties of Lucas d-
pseudoprimes and y/(N). The following three lemmas can be proved by methods analogous to 
those used to prove Lemma 3.1, Lemma 3.2, and Lemma 3.3. 

Lemma 4.1: If Nis a Lucas J-pseudoprime, then (N, d) = l and there exist integers ft'and c such 
that 

A'(N) =
 b < V(N) =

 c 

N-s(N) d'N-s(N) d (4.2) 

1998] 367 



PSEUDOPRIMES, PERFECT NUMBERS, AND A PROBLEM OF LEHMER 

Lemma 4.2: If TV is a Lucas rf-pseudoprime with prime decomposition (2.1), then t < log3/2(2d). 

Lemma 4.3: If Nh a Lucas rf-pseudoprime with prime decomposition (2.1) and kt > 2, then 

p^~l< 2(2/3/(^ + 1). (4.3) 

The following theorem is new; it sharpens a result of the third author in [14]. 

Theorem 4.4: Let dhe a fixed positive integer and suppose that 2r exactly divides d. Then there 
are at most a finite number of Lucas rf-pseudoprimes N such that | S(N) | > r + 2. 

Proof: Suppose that there are an infinite number of Lucas <f-pseudoprimes N with \S(N)\> 
r + 2. By Lemma 4.2, there exists an integer t, with r + 1 <t <log3/2(2<i), such that an infinite 
number of these Lucas rf-pseudoprimes have exactly t distinct prime divisors. Thus (4.2) is 
satisfied by an infinite number of integers N. There are, however, only a finite number of possible 
values for c, and it follows that there is some value of c for which (4.2) has an infinite number of 
solutions N. Fix this value of c and let O be the (infinite) set of positive integers N that satisfy 
(4.2) for these fixed values of c and d. 

If S(Q) is bounded, then, by Lemma 4.3, Q is finite, contrary to our choice of c. Conse-
quently S(Q) is unbounded. Moreover, by Lemma 4.2, {\S(N)\}NeQ is bounded and it follows 
that 

NeQ l//(N) 

It then follows that 

2f_1 Km T ^ T T T T = ? Mm iN ( m , 

= 2'-1 lim , „ l
 (m, = 2'"1 lim t^P] = lim %N). 

By Lemma 4.3, {N2\N e O} is bounded and, by Lemma 4.1, (N9d) = l for all N G Q. 
Moreover, since s(N) = (•—•) and, by definition of Lucas rf-pseudoprime, (D, N) = 1, it follows 
that O is supported by s. Therefore Theorem 2.3 implies that 2{~lc/d=l. Thus d = 2t~1c. 
Since 2r exactly divides d, the hypothesis that t>r +1 implies that r>t-l>(r + l)-l = r, a 
contradiction. • 

The following two corollaries are stated in [14]. 

Corollary 4.5: Ifd is odd, then there are at most finitely many Lucas af-pseudoprimes. 
Proof: Theorem 4.4 handles the case in which N has at least 2 distinct prime divisors and 

Lemma 4.3 handles the case in which Nis a prime power. • 

Corollary 4.6: If 2 exactly divides d, then there are at most finitely many Lucas af-pseudoprimes. 
Proof: Suppose otherwise and fix d such that d = 2 (mod 4) and there are infinitely many 

d-pseudoprimes N. Then, by Theorem 4.4 and Lemma 4.3, there are infinitely many af-pseudo-
primes with \S(N)\ = 2. By Lemma 4.1 and the argument in the proof of Theorem 4.4, 

*W =1- (45) 
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and hence, if N has decomposition (2.1), 

(f l -g(f l)Xft-g(f t)) 
N-W =l ( 46 ) 

If either kx > 1 or k2 > 1, then 

(ft ~ g(fl))(ft ~ g(ft)) = Oi ~ g(fl)Xft ~ g(ft)) 

< (fl + lXft+ 1) < (3 + 1X5 + 1) = 24 
" rfft-1 ~ 9-5-1 44 ' 

(4.7) 

a contradiction. Therefore k1 = k2 = l. 
It now follows that 

(Pi-s(Pi))(P2-<P2)) = PiP2-s(Pi)£(p2), and 
A«(ft) + A«(fl) = 2fi(A)e(A). 

If £•(/?!) = £(#2), then pj + p2 = +2, which is impossible. Hence, s(px) = -s(p2). 
Since p2 > px, it now follows that p2-pl = 2, i.e., px and p2 are twin primes. 
Now, by Lemma 4.1, 

b= X'(N) = lcm{(fl + l),(fl + 2- l )} = 1 
d N-e(N) pl(j>i+2) + l A + 1 ' 

(4.8) 

(4.9) 

It follows that d - b(px +1). Clearly, there are only finitely many prime twins px and px + 2 such 
that pi +1 divides f̂. This final contradiction completes the proof of the corollary. D 

5. LEHMERfS PROBLEM 

In [7], D. H. Lehmer asks whether there exist composite integers N such that (j>{N) divides 
N-l. IfNhas prime decomposition (2.1), then 

^N) = Nfl^. (5.1) 
p\N P 

Consequently, ifd(/)(N) = N -1, it follows that 

dNH(p-l) = (N-l)Ylp, (5.2) 
p\N p\N 

and therefore 
dN2]J(p-l) = (N-l). (5.3) 

p\N 

Since (N,N-1) = 1, this implies that N2 = l, i.e., N is square-free. 
The following theorem was first proven by C. Pomerance in [10]. 

Theorem 5J: For any integers t>\ and d>\, there are at most a finite number of integers 
N > 2 such that d</>{N) = N -1 and \8{N)\ < t. 
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Proof: Fix positive integers t and d, and let O be the set of all positive integers N such that 
d<j>(N) = N-1 and \S(N)\ < t. By way of contradiction, assume that fi has infinite cardinality. 

It follows from the hypotheses that (N, d) = l for all N e Q and, from the remarks above, 
that N is square-free. Moreover, since </>(N) is even for N greater than 2, every element of O is 
odd. 

It now follows for each NeQ that <f>(N)/(N-l) = l/d. As in the previous sections, 
replacing O with a subset if necessary, we obtain 

= hm£(N). (5.4) 
d N - l NEQN-1 NeQ N - l NeQ 

It now follows from Corollary 2.4 that d = l,a. contradiction. • 

6. PERFECT NUMBERS 

If JVis a positive integer, define cr(N) to be the sum of the positive divisors of N. A positive 
integer N is called a, perfect number if a(N) = 2N. It is well known that every even perfect num-
ber is a Euclid number, i.e., an integer of the form 2"(2W+1-1), where 2"+1-l is a Mersenne 
prime. Moreover, it is well known that every odd perfect number can be written in the form 
N = pM2 for some integer M > 1. It follows that 6 is the only square-free perfect number. 

Recall that if N has decomposition (2.1), then 

*^=nVr- (61) 
p\N P l 

If Nis square-free, then (6.1) becomes 

P2-I 
P\N y l

 P\N 
a(N) = Y[^-f = Y[(p + l) = N4(N), (6.2) 

where the signature function s is given by s{p) = -1 for all primes/?. Thus, for N square-free, N 
is a perfect number if and only if 

&N) = 2. (6.3) 

More generally, we can ask for square-free ^-perfect integers N, that is, solutions N of 
£(N) = k. (6.4) 

L. E. Dickson [3] and I. S. Gradstein [5] have both proven that there are only a finite number 
of odd perfect numbers N with \S(N)\ bounded, and Dickson [3] generalized this result to primi-
tive abundant numbers. H.-J. Kanold [6] has studied (6.4) for k rational, and proved that there 
are only finitely many primitive (and hence only finitely many odd) solutions N with a fixed num-
ber of prime factors. As mentioned in the introduction, these results have recently been general-
ized by Pomerance [9] and D. R. Heath-Brown [4]. Here we apply the methods developed above 
to prove a similar result for multiperfect numbers. 

Theorem 6.1: For fixed k and t, there exist at most finitely many square-free integers N such that 
\S(N)\ < rand 

a(N) = kN. (6.5) 
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Proof: By the remarks preceding the theorem, the condition a(N) - kN is equivalent to 
g(N) = k. Let CI = {N | g(N) = k, | S(N)\ < t, and N is square-free}. By way of contradiction, 
suppose that CI has infinite cardinality. Since each TV e O is square-free, {N2\NGCI} is 
bounded. It is clear that CI satisfies the hypotheses of Corollary 2.4, and we conclude that k = l. 
But, clearly, a(N)>N + l>kN,&contradiction. D 
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