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It is the object of this note to demonstrate that the two equations of the title have only finitely
many solutions in positive integers x and » for any given integers a and &, k£ # +1. In these equa-
tions, (7,),.s, is the sequence of Chebyshev polynomials of the first kind.

1. Chebyshev Polynomials of the First Kind (7,,(x)),»o-

These polynomials are defined by the recurrence relation
T.x)=2x-T(x)-T_,(x), (V)xeC,neN*, (1.1
where 7)(x)=1and 7;(x) = x.
We also have the sequence (T;(x))nzo of polynomials "associated" with the Chebyshev poly-
nomials (Z)(x)) o'
]N;+1(x)=2x-7~;,(x)+7_l(x), xeC,neN*, (1.2)
with Ta(x) =1and T;(x) =x.
The connection between the sequence (7)), and the sequence ()., is given by the
simple relations,

7 T (%)
T,(x) =45,

J (1.3)
T, (x) =@, keN,xeC,
where i =-1.
Two important properties of the polynomials (7)), are given by the formulas
T (cosp) =cosnp, neN,p €C, (1.4)
and
T(T(x)=T,(x), (V)mneN,(¥V)xeC. (14"
Also, we observe that
T(3) =1 hz)=1
L) =41 h(%)=41
h(%)=¥"-1 L(g)=+"+1
5(F)= %@ -9 )=+
T,(%)=2x" —4x" +1 T(%)=2¢"+4x" +1
L(%) =% @x"-10x"+5)  Tj(&) =% (4x" +10x" +5)
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2. The Equation x> —k = T,(a* - 1).
Lemma 1: If (T (x)),5, is the sequence of Chebyshev polynomials of the first kind, then one has
L@ -0)=2-T}(%)-1, (VneN,(V)aeC. 2.1)
Proof: Indeed, we have

n@ -0=1,(2(%) -1)=5(5()) - 5.(%)

Lemma 2: We have
2-T}(&)=z,, z, €N, (2.2)
where n=2m+1, meN.

Proof: Indeed

2-1(%) =2 BunlF)=2:(&- )
=a*-(-)* =(a(--))* =22, z, e N*. QE.D.
From Lemma 1 and Lemma20ne obtains, for n=2m+1, meN, T (a -D= 2m+1(" -=

zfn —1, where z,, € Z. Thus, X —k= zm —1, which can be solved immediately, giving only finitely

many possible values of x, if k= £1 (see [2]); hence, only finitely many possible corresponding
valuesfor n=2m+1meN.

For n=2m,m e N, from Lemma 1, one obtains
L@ -D+1=2-T;(%)=27,, 7, €N,

where

20 =L(5)=5(T,(%) =2 T2(%) -1=2-w2 -1

ifmiseven. If m=2A4+1 is odd, we have

vl m=2A+1,AeN

Zn = ];m(%) = { " ’ ’ (2.3)

2wl -1, m=24,A€N.

Consequently, one gets

2-v2—12—1, m odd,
¥ -k=T(@ -)=2-T}(%)-1 { Cn b

2-(2w; - l)2 —1, meven,
24
{2 . v,: - 4v:, +1, modd,

4 2
8w, —8w, +1, meven
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Thus, we obtain either

x? =2vh —dvh+k+1=T,(22) +k (2.5)
or
x> =8w, - 8wl +k+1=T,(w,)+k, (2.6)

and each of these equations has but a finite number of solutions in integers for each given k = +1
(see [2]). Thus, for each given k € Z, k # £1, there are but finitely many possible values of x, and
hence of corresponding n=2m,me N .

3. The Equation x*>—k =T (a* +1).

Lemma 3: If (T),, is the sequence of polynomials "associated" with the Chebyshev polynomials
(T),:50> then one has:

@ L.(g)=2T(F)-C0"nen,
®) L@ +)=T, (%) neN,
@ T(@+1)=2-T}%)-(-)", neN.

[

I

Proof:
(a) We have:

B =2 o )= -3
:(—1)"-[2-T,f(i-%)—l]z(-l)"-[z-(i"-T;(ﬁ))z—q
=(-1)"-(2-(—1)"-7,,2(712-)—1)=2-7,,2(—}5)—(-1)". Q.E.D.

(®)

=~ L\ 5 n o (s " .
L) -2 e g)-cornfago5)

=0 g2 () -1)= Tt -
=(=)"-(-D)"-T(a*+1). QE.D.
(c) For n=2m+1,meN, we have
Told5) =2 B +1= (V2 ()] 415041,
where
in =7 Tl ) N

Thus, in this case, we obtain x> — k = z> +1, and the result follows as before.
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For n=2m,m e N, we have

L@ +1) =1, (@ +1)=2- L2 (%)-1=2.1) -1,

where
2
~ . v +1 m odd
b= Lol )=2- L&) -(-D)" =1 "~ ’
2 (ﬁ) m(ﬁ) 2w2_1 m even.

Consequently, we have

) ) 2-(i+1)’-1, modd, [2vi+42+1, modd,
T, +1) =T, (@ +1)= = 3.1)
2-2w2-1)*-1, meven, (8w, —8w2+1, meven.
Thus, we obtain
x2=2v,‘:,+4v,f,+k+1=7~;("—‘/’.;_)+k (3.2)
or
X =8wh —8w2 +k+1=T(w,)+k (3.3)

and the result follows. In this case, as before, for each given & # 1, there are finitely many pos-
sible values of x, and hence, only finitely many possible corresponding values for n=2m, me N .
This concludes the proof of the result of this paper.
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