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1. INTRODUCTION 

Let k and n be nonnegative Integers with n > 0 and let 

Sn(k) = \k+2k + -+rt. (1.1) 

Thus, Sn(0) = n9 S„(l) = tfn + l)/2, S„(2) = n(n + l)(2n + l)/6, and so forth. A well-known 
recurrence is 

k-l 

;=0 

It Is also known (and easy to prove) that 

z(5)^o)=(i+") f c - i (**i). 

2±(^2fjS„(2j) = (l+rifk-n*k-l (A>1), (1.2) 

2Y[fjt^Sn(2j + l) = (l+nfM-n
2M-l (k>l) (1.3) 

(see, e.g., [8, p. 160]). Howard [4] proved the following formula. For r = 0,1,..., 5.and n> 0, 
k>\: 

6 Z [ 6j + r J^(6-/ + r>= Z [ s . Jwr-X? (1.4) 

where w7- = w6+J- for j = 0, ± 1, ± 2,..., and the values of Wj for 7 = 0,1,..., 5 are given by 3, 2, 0, 
- 1 , 0, and 2, respectively. 

These formulas suggest there may be other simple recurrences involving only Sn(mj + r), 
where m, n, and r are fixed and 0<r<m-l. We call such formulas "lacunary," meaning they 
have lacunae, or gaps. That is, the value of Sn(mk +r) does not depend on all the previous Sn(J) 
(0< j <mk + r), but only on the terms Sn(mj + r) (0<j<k). 

In the present paper the main result is Theorem 3.1, which is a general lacunary recurrence 
for the sums S„(mj + r). After proving Theorem 3.1 in Section 3, we illustrate it by proving the 
following theorem for m = 4. 

Theorem 1.1: For k > 1 and r = 0,1,2,3, 

where the numbers Cj are determined by the following formulas: for j = 0,1,2,..., 

c4J=2(-4y-4, c4 y + 1=2(-4y-2, ' c4y+2=0, c4y+3 = -4(-4) ' - 2 . 
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After proving Theorem 1.1, we use it to compute Sn(5). One of the key ideas in all of these 
results is the generating function (ex -X)^9* -1) • • • (e6* x -1), where $ is any primitive nfi root 
of unity. This generating function, an interesting topic in its own right, is discussed in Section 2. 

We also prove similar formulas for the alternating sums 

T„(k) = 1* - 2 * +3* - - +(- l )w"V, (1.5) 

and, finally, we show how the results of this paper can be applied to the Bernoulli and Genocchi 
numbers. 

2. GENERATING FUNCTIONS 

Let 6 be a primitive m^ root of unity so that 9m - 1 and 6h *• 1 for 0 < h < m. For example, 
we could let 0 = e?*l/m. 

Define the numbers bj and Cj by means of the generating functions 
/ w - l oo j 

n ( ^ - l ) = (e*-l)(^-l)"Vm~*-l) = I*,7r, (2.1) 
u=0 j=0 J • 

and 
/ w - l co / 

* H ( ^ - l ) = X<7^. (2.2) 
u=l f=0 j \ 

Note that any primitive nfi root of unity can be used in (2.1) and (2.2). The numbers bj and c. 
depend on m, but the value of m will always be clear when we use this notation. Note also that 
b0 = 0 and for m = 1, we have Cjr = 1. 

If we replace x by —x in (2.2), we have 

£ i-iycj ±- = e^flie-8"31 -1) = U(ee"x -1) / [(-1)-V<1+**- +**~1>] 

/ W ~ l 

W = l 

This gives us another useful generating function for ci: 
/ w - l W - l oo I 

n(^'-i)=I(-i)m+y",<7^r- (2-3) 
M=I y=o 7 • 

From (2.1), (2.2), and (2.3), we have 
0 0 W / w - l / w - l / w - l 

s^7r=^n(^-i)=n(^-i)+n(^-i) 
y=o ./ • M=I M=O M=I £i + £(_ir,-ic.£i. 

•/ * 7=0 J ' 

(2.4) 

j=o J- y=o 

Thus, we have bj = (l + (-l)w+;)cy; that is, 

( 2c, if(m+j) is even, 
(2.5) 

0 i f(^+j) isodd. v } 
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To prove the main result of this section, Theorem 2.1, we need the following lemma. 

Lemma 2.1 (multisection of series): Let 6 be any primitive m^ root of unity (such as e27ti,m) 
and let F(x) - E£L0

 akxk f°r complex numbers ak. Then, for r = 0,1,..., m -1, 
oo .J m - l 
H^rXmJ+r =^T^m~J)rnOJx). (2.6) 

If z() is a complex number in the circle of convergence of F(x), we can replace x by zQ in 
(2.6). Multisection is discussed in [8, p. 131], and a proof of Lemma 2.1 is given in [3]. 

Theorem 2.1: Let 0 be a primitive m^ root of unity, and let bj be defined by (2.1). Then bj = 0 
unlessj is a multiple of m. Furthermore, if m is odd then ft. = 0 unless j is an £%&/ multiple of m. 

Proof: We take the logarithm of both sides of (2.1) to obtain 

\og{ex -1) + log(e* -1) + • • • + log^"1* -1) = log f > , 4 ' (2"7> 
;=0 i ! 

In (2.6), let F(x) = log(ex -1) and r - 0, and compare the left side of (2.7) with the right side of 
(2.6) to obtain 

y=0 ;=0 •/ • 

Applying the exponential function to (2.8), we have 

exp m 
\ 

Z<V*) = lbA- (29> 
y=0 J ;=0 J • 

We now compare coefficients of xJ on both sides of (2.9) and see that bj = 0 unlessy is a multiple 
of m. Now suppose m is odd. Replacing x by -x in (2.1), we have 

oo mj 

(e~* - l)(e-°* -1) • • • (e-*~ * -1) = L ( - l ) m % ^ y -

Thus, 
m - l m - l co v2m/" 

n«f--D+nc--o-*i'w^i- <2i°) 
M = 0 w=0 ; = 0 v • / / 

Now we observe that 
flor""* -1) = r j ( ^ - i)/[(-iy^1+f?+- ••+*""'>] = -fl(e -1)-

Thus, the left side of (2.10) is equal to 0 and, therefore, b2mJ = Q for j >0. This completes the 
proof. • 

Theorem 2.1 tells us that the generating function (2.1) could be written as: 
m - l oo mj 

u=Q j=0 ^ • ' '* 
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m-l oo w(2/+l) 

3. A GENERAL FORMULA 

We are now ready to prove our main result, a general lacunary recurrence for the sums 
Sn{mj+r). We will need the following generating function: 

F1(x) = ̂ ^ = ex+e2x + ...+e™ = 'ZSn(j)~ (3.1) 
e A j=Q J' 

Theorem 3.1: Let Sn(j), hj, and Cj be defined by (1.1), (2.1), and (2.2), respectively. Jfm is a 
positive integer, then, for r - 0,1,..., m -1: 

If m is odd and k > 1, then, for r = 0,1,..., 2m-1: 

Proof: Let -£J(x) be defined by (3.1). We multiply both sides of (2.1) by Fx(x) to obtain 

(^-iKn(^JC-i)=^wZ^i7r- (3.4) 

Recalling (2.2) and (2.11), we compare coefficients of xJ on both sides of (3.4) to derive (3.2) for 
m even or odd. 

If m is odd, then by (2.12) we can let k - j be odd in (3.2). We now consider the cases of k 
even and k odd to obtain (3.3). 

Case 1% k is even. In (3.2), since k - j is odd, replace k by 2k andj by 2j +1 to obtain 

r' + m+r) 

(3.5) 

1^({2k-l)m + (m+r)\ c / 0 • 
2 ^ 2tfy + (w + r) J V - i - 2 ; ) A l ^ i -

-^ + r + Y(2A- l )w + (m+r)^| 
iL I S \C{2k-l)m+{m+r)-iP • 
s=\ V ' 

2m(fc-l)+/w+r+l / 

If we let rf = (m + r) ;in (3.5), we get (3.3) with r replaced by r' and m<rf < 2m. 
Case 2: k is odd. In (3.2), replace k by 2&-1 and replace j by 2/ to obtain (3.3) with 

0<r <m. 

Combining the two cases gives us (3.3) with 0 < r < 2m. This completes the proof. • 

We illustrate Theorem 3.1 by proving formulas (1.2) and (1.3) and Theorem 1.1. 
Let m = 2. From definitions (2.1) and (2.2), we see that h2j+l = 0 and, for j > 0, h2j = -2 

and Cj = -l. Thus, 
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which is equivalent to (1.2) and (1.3). 
Formula (1.4) can be deduced from Theorem 3.1 by letting m = 3. 
To prove Theorem 1.1, we let m = 4 and 0 = /. The left side of 

7=0 J • 
can be written 

2 - 2ex - eix - e'ix - e(1+/>* - eil'i)x9 

so for y > 0, 
Cj = -2-iJ' -(-i)J + (l+iy +(l-iy. 

This gives us 

c4j = -4 + 2(-4y, c4J+l = -2 + 2(-4y? c4y+2 = 0, c4J+3 = - 2 - 4 ( - 4 y . (3.6) 

By (2.5) we have, for j > 1, 

b4J=2c4j = -% + 4(-4y. (3.7) 

For m = 4 and the values of Zr and cy given by (3.6) and (3.7), equation (3.2) gives Theorem 1.1. 
This completes the proof. D 

To illustrate Theorem 1.1, we compute Sn(S). In Theorem 1.1, let r = 1 and k = 2 to obtain 

Using (3.6) and the formula S„ (1) = n(n +1) / 2, we have 

We could easily keep going here and compute Sn(9), S„(13)9 and so on. 

4 ALTERNATING SUMS 

The methods of Sections 2 and 3 can be used just as easily on the alternating sums Tn(k) 
defined by (1.5). Let 6 be any primitive m^ root of unity, and define the numbers gj and hj by 
means of the generating functions 

m-l . oo / 

n(«^+i)=(«*+ix«to+i)-(«^x+i)=z«>iF. (4i> 
and 

exU(ee"X + l) = HhA- (4-2) 
11=1 ;'=0 J' 

Note that ĝ  and hj are functions of m. 
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Analogous to (2.3), and proved in the same way, is another generating function for hj: 
m-\ 

n(^+i)=i(-iy*yir- (4-3> 
H = 1 J=Q J' 

Equations (4.1), (4.2), and (4.3) give us the relationship hj = ±gj if/ is even. 
Theorems 4.1 and 4.2 are analogous to Theorems 2.1 and 3.1, and they are proved in exactly 

the same say. The following generating function is used in the proof of Theorem 4.2: 

F2(*) = { } * . - ^ - ^ + -+H)1+^-E^0)77- (4-4) 
e + 1 j=o J-

Theorem 4.1: Let 6 be a primitive rrfi root of unity and let gj be defined by (4.1). Then gj = 0 
unlessy is a multiple of m. Furthermore, if m is odd, then gj = 0 unlessy is an even multiple of m. 

Theorem 4.2: Let Tn(j) be defined by (1.5) and let gj and hj be defined by (4.1) and (4.2), 
respectively. If m is a positive integer, then, for r = 0,1,..., m -1, 

tf^tr)^-j>T>J + r) = H)"+1 I f [mk
s
+r)hmk+r_^ +hmk+r. (4.5) 

If m is odd, then, for r - 0,1,..., 2m -1, 

^(Im)+0^ ( t -^ 2 '" : r " ( 2 / W - 7 ' + r ) = ^ 1 >" + l 2 £ + r ( 2 , M ^ + r ) / i 2 m f c + ' ' -^ S +/^̂ -" (46) 

We note that, by (4.2), h0 = 27""1, so the right sides of (4.5) and (4.6) are polynomials in n of 
degrees mk + r and 2mk + r, respectively. We also note that g0 = 2m. 

For example, let m = 2 and 0 = - 1 . Then we have gQ = 4, g2j = 2 if/ > 0, /{, = 2, and fy = 1 
if 7 > 0. Theorem 4.2 gives us 

4Tn(2k+r) = -2Z(fjZy„(2j+r) + l + (-iy 

+(-ir1[T1(2V)"I+2"2fc+r}-
The following formula for m = 3, which is analogous to (1.4), was given in [4]. Let m = 3, 

let 0 be a primitive third root of unity, and let Wj be defined as in Section 1. Then, for n > 0 and 
£ > 0, with r and & not both 0, 

iTM+r) = Jfj^jlr^Tn(6j + r)+[\ + {-^rl]wr 
;=<T 

+ H r i { T 1 ( 6 * J
+ r ^ + 4w6*+r 

If #* = 4, we use Theorem 4.2 to prove the following new result. 
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Theorem 4.3: Let n > 0 and k > 0. Then, for r = 0,1,2,3, and r and k not both 0, 

16T„(4k +r) = -4]T {** +;}[(-4)*-' + 2] r„(4/+/•) + />4/fc+r 

+(-irl4zT4';>4^_x, 
where h0 = & and the numbers fy, except for h0, are determined by the following formulas: for 
7 = 0,1,2,..., 

h4J=2(-4f-h+4, h4J+l = 2(-4f-h+2, h4J+2 = 0, A4.+3 = -4(-4)^4-2. 

5, BERNOULLI AND GENOCCHI NUMBERS 

The methods of this paper can be applied to other special number sequences. For example, 
consider the Bernoulli numbers Bn defined by the generating function 

^zi=iBS (5.i) 
e i „=0 " . 

These numbers are well known and have been studied extensively (see, e.g., [7, ch. 2]). It is well 
known that B0 = 1, Bl = -}{, and B2k+l = 0 for k > 0. 

We can use the methods of this paper to derive the following general lacunary recurrence for 
the Bernoulli numbers. 

Theorem 5.1: Let Bn be defined by (5.1) and let h} and c. be defined by (2.1) and (2.2), respec-
tively. Ifm is a positive integer and k > 0, then, for r even, 0 < r < m, 

| J ^ + ; ) V / > A y + r = (mk+r)cmk+r_v 

Ifm is odd and k > 0, then, for r even, 0 < r < 2m, 

£ {2mf+F+ jb(2k-l-2j)m
B2mj+r = K2k " l)m + ' l C{2k-l)m+r-l' 

Proof: Multiply both sides of (2.1) by x I (ex -1) to obtain 

*fi(^-l) = ̂ I * , 4 (5-2) 
By (2.3) and (5.2) we have, for n > 0, 

The remainder of the proof is similar to the proof of Theorem 3.1. D 

Several writers, like Chellali [1], Lehmer [5], Ramanujan [7], and Riordan [8, pp. 136-40] 
have developed lacunary formulas for the Bernoulli numbers (see [2] for references). 
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Obviously, the methods of this paper can also be used on the Genocchi numbers Gn, which 
are defined by 

AX "̂"< f~i X 

Lacunary recurrences for the Genocchi numbers can be found in [2]. Incidentally, it is well 
known that the Genocchi numbers are integers and that G2j = 2(1 - 22j)B2J. 

As a final comment, we note that the numbers bj and gj of this paper are special cases of the 
generalized Bernoulli and Euler numbers of Norlund [6, pp. 142-43], which are defined by 

and 

(e°i* + l)(e^x +1) • • • (*"** +1) = £ 2^JCfm\a)l9..., mm) ^ - , 
y'=0 J' 

where col9..., com are arbitrary complex numbers. To the writer's knowledge, none of the proper-
ties of bn and gn developed in this paper were proved by Norlund. 
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