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Ducci-sequences are successive iterations of the function 
/(x1? x2,..., xn) = (|xx -x2 | , |x2 - x j , . . . , \xn -XJI) . 

Note that / : Z" -> Zw, where Z" is the set of n-tuples with integer entries. Since they were intro-
duced in 1937, Ducci-sequences, also known as the w-number game, have been studied exten-
sively (e.g., [1], [3], [5], [6], [7], [8]). In 1982, Wong suggested a generalization which he called 
Ducci-processes [12]. Ducci-processes are successive iterations of a function g:Zn —» Zn which 
satisfies the following three conditions: 
(i) there exists a function h:Z2.—> Z; 
(ii) ^(x1? x2,..., xn) = (/i(xl3 x2),h(x2, x3), ...,h(xn9 xj) 
(iii) the n entries of gk(xh x2,... ,-xn) are bounded for all k. 
Note that Ducci-sequences are an example of a Ducci-process with h(x, y) = \x-y\. 

In [4], Engel introduced the Ducci-process Dm, where h(x, y) = (x+y) (mod m): 
Dm(xl9 x2,..., xn) - (xx + x2 (modm), x2 + x3 (modm),..., xn + jq (modm)). 

Since numbers are reduced modulo 'm, we can view the domain and range of Dm as Z£, the set of 
w-tuples with entries from Zm. Because Z* is a finite set, the iterations {Dl(X)} will eventually 
repeat, resulting in a cycle. As with Ducci-sequences, the goal is to characterize cycles in terms 
of n and m. This is done in [9] for n = 4. 

We will begin with some general observations about Dm. Then we will focus on 5-tuples, 
where the Fibonacci numbers play a prominent role. 

GENERAL OBSERVATIONS 

To simplify notation, we define two functions on Zn'. For X = (x1? x2,..., xn) GZ" 5 

D(X) = D(xt> X2, ..., Xn) = (Xx + Xj, X2 +X3, ..., Xn + XtX 

H(X) = H(xh x2,..., xn) = (xj, %.. . , xn, xjl. 

We write D(X) = (xi + x2, x2 + x3?..., xn + jq) (mod m) in lieu of D^X) . Note that D and H 
are commutative, linear operators; moreover, D(X)=X + H(X). Iterations of D and H are de-
fined as DJ(X) = D(DJ-l(X)) and HJ(X) = H(Hj-l(X)), respectively. Thus, Hn(X) = X and 
i f^(^) :=^ ( m o d ? 2 ) (^)-

A further simplification occurs with the introduction of the special ra-tuple i4 = (l,0,...,0). 
Using the function H, we can write X = (xh x2,..., xn) in terms of A: 

X = x1.(l,0,...,0) + x2.(0,l,...,0) + ...+xr|.(0,0,...,l) 
= xl'A + xrHn-l(A) + xrHn-2(A) + --+xn_l.H2(A) + xn-H{A) 
= ^n%iHn+l-f(A). 
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Hence, 

Similarly, D7 (X) can be written in terms of Dj (A). 
As we noted above, the iterations of X will eventually lead to a cycle. That is, there exist 

nonnegative integers / and s for which Dl+s(X) = DS(X) (mod m). If / and s are as small as 
possible, then we will write lm(X) = I and %m(X) - s. When the context is clear, we will omit the 
subscript m. Thus, l(X) is the length of the cycle generated by X, while §(X) is the number of 
iterations necessary to reach that cycle. Considering all members of Z", let 7 and Wbe the tuples 
for which 1(7) and §(W) are maximum, respectively. We denote these maximum lengths by l(m) 
and §(m). Our goal is to characterize l(m) and §(m). 

Theorem 1: For all n, l(m) = 1(A) and §(m) = §(A). Further, if m = p\x -p^2 ptJ, where the 
# 's are distinct primes, then l(m) = IcmflOf1),..., l(pjJ)} and §(m) = max{§(p^),..., §(PjJ)}-

Proof: Let X = (xi9x2,...,xn)eZZt. As we noted above, DJ(X) = Ti<i<nxiHn+l-i(Dj(A)). 
Thus, 

ZfiAWA)^ s E ^x^^ iD^^^ iA) ) (modm) 

^^H^iD^XA)) (modm) 
= D^A\X). 

Hence, for all X, §(X) < §(A) and l(X) \l(A). We conclude that l(m) = 1(A) and §(m) = 3(A). 
Using the prime decomposition of m, we know that 

Zm=Z
D^ ®ZB*i ®~'®Z kj9 Pi Pi Pj 

where © denotes the direct sum. For an w-tuple 
(xl9 X2,..., xn) = i\xl9 x2,..., xn),..., (xu x2,..., xn)). 

^zl ^z\ GZV 
m P? PJJ 

Thus, Dl+S(X)^DS(X) (mod m) if and only if Dl+s(X) = DS(X) (modpf') for \<i < j . Con-
sequently, I(iw) = lCTi{IO^),..-,t(P/-/)} and §(/») = m a x f S C r f ' X . - , ^ ) } . ° 

Theorem 1 greatly simplifies our work. To determine l(m) and §(m)9 it suffices to calculate 
lu(A) and £U(A) for u-pk with/? a prime. Since our ultimate goal is to characterize l(m) and 
§(m) for 5-tuples, we narrow our focus to 71-tuples with n odd. 

Lemma 1: Let n be odd. If m is odd, then for each H-tuple X there exists a unique w-tuple 7 such 
that D(Y) = X (mod m). 

Proof: Let X = (xl9x2:t...,xn) and 7 = (yl9y2,...,y„) be 72-tuples. In order for D(Y) = X 
(mod w), we must have 

(yi + J2> J 2 + J3 ? ...,^» + yd s (% x2?..., * J ( m o d *»)• (i) 
Hence, 

Oi+J 2 ) - (F2+^3)+• • •+(-iy+10/ +j*+i)+—+o„+^i)=Si</<w(-iy+1^ (mod m), 
420 [NOV. 



DUCCI-PROCESSES OF 5-TUPLES 

which simplifies to 

2yl^i:i<i<n(-iy+lxi(modmy (2) 

Since m is odd, 2 has an inverse in Zm, so (2) has a solution for yv We solve, in turn, for the 
other entries of Fusing (1): 

y2
 s x i ~ y \ ( m ° d m \ y3 = x2-y2 (modm\...9yn = x^-y^ (modm). (3) 

Since the solutions in (2) and (3) are unique, 7 is unique. • 

Theorem 2: Let n be odd. Then §(m) = 0 if and only if m is odd. 

Proof: We begin with the case in which m is even. Suppose there exists an /i-tuple Y = (yl9 

y2, ...,y„) such that D(Y) = A (mod m). Then 

( y i + ^ ^ + ^ - . ^ + J i ) ^ ^ ^ - ^ ) (modm). (4) 
As in Lemma 1, (4) implies 2yx = 1 (mod m). But this is impossible since m is even. Thus A is 
not in a cycle and §(A) > 0. Hence, when m is even, §(m) & 0. 

When m is odd, we know from Lemma 1 that every n-tuple has a predecessor. For X eZ^, 
we can find a sequence of n-tuples such that 

DQQ^X, Wii^i, DiY3)sY2, D(Y4) = Y3, D(Y5) = Y4,... (modm) (5) 

or, equivalently, 

DQQ - X, D2(Y2) - X, D\Y3) = X, D4(Y4) - X, D5(Y5) - X,... (modm). 

Since there are only a finite number of w-tuples, eventually the sequence in (5) must repeat. That 
is, Yt = Yj (mod m) for some i> j . This implies D;"(I^) = DJ'(Yj) = X (mod wi). Hence, X is in a 
cycle and §(X) = 0. We conclude that §(m) = 0. D 

Using Theorems 1 and 2, we see that, when n is odd, 

§(m) = max{8(2*), §(p*2),..., S(pfO} = *(2*), 

where the #fs are distinct primes and m = 2k -p2
2 •••-pkj. Thus, finding §(m) requires only cal-

culating §(2*). 
As for I(/w), since A is in a cycle if and only if m is odd, there are two cases: l(pk)9 where p 

is an odd prime and 1(2*), In much of what follows, we will consider the first case, leaving the 
second, special case for the end. 

Theorem 3: Let n be odd and p be an odd prime. Suppose that D\A) = A (mod/?*). Then 
Dpt(A) = A (mod/ + 1 ) . Thus, t ( / + 1 ) equals either l(pk) or j? • ! ( / ) . 

Proof: We begin by noting that Theorem 2 guarantees the existence of t > 0 for which 
D^A) =5 ^ (mod /?*). Rewriting the congruence as an equation gives 

D*(A) = A + (blP
k, h2pk,...,bnpk) = A + H^h^B^iA). 

Thus 
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D2t(A) = D'(A + S1S<„ b^H^-'iA)) 
= D'(A) +1^ b^H^-'iD'iA)) 
= A + Z ^ blP

kH»+l-'(A) + I l f i ,„ biP
kH"+l-j(A + -ZHJ,„ bjP

kH"+l-J(A)) 
= * + Sls,<„ 2biP

kH"*-\A)+p2k I ^ „ J^Jin bfijlP-^-'-^A) 
= A+Z^„2bipkH"+1-'(A)+p2kX2, 

where X2 = !,!<,<„ ZKy<n bfijH2"*2-^ (A). By induction, 

Dht(A) = A+>Zl<i<nhbipkH"+1-*(A) + phkXh 

for some //-tuple Xh. Hence, 

D^ {A) = A + !,<,<„ pbiP
kHn*-\A) + p>>kXp 

= A + £,<,<„ b^H^-'iA) + pPkXp 

= A{moApM). 

Now let t = r<>*). If p\bt for all i, then D'(A) = A (mod / + 1 ) . In this case, l ( / + 1 ) = l(pk). 
On the other hand, if p\bt for some /', then l(pk+1) = p• l(pk). • 

Corollary 1: Let n be odd and/? be an odd prime. 
(i) If \{p2) * \{p), then I ( / ) = / " ' • \{p) for all & > 2. 

f/i> If l(p2) = l(p), then there exists u > 2 such that l(pk) = l(p) for all k < u and 
t ( / ) = /"W-I(p)for all* > u. 

Proof: The proof of Theorem 3 shows that, if D*(A) = A (mod//) and D\A)4 A (mod 
pk+l), then D ^ ) = ^ (mod pk+1) and D " ^ ) # A (mod / + 2 ) . Hence, if l(pk+l) = p-l(pk), 
then I(/?i+2) = p2-i(pk). Results (i) and (ii) follow immediately from this observation. • 

Corollary 1 greatly reduces our work since l(pk) = ps-lip) for some s< k -1. This allows 
us to focus on \{p) 

5-TUPLES AND FIBONACCI NUMBERS 

We now restrict our attention to 5-tuples. We begin by considering DJ(A). Surprisingly, 
DJ(A) can be expressed in terms of the Fibonacci numbers. We will use the standard notation: 
F0 = 0, Fx = 1, F2 = 1, and FJ+l = F^ + Fj. 

Theorem 4: For i > 1, 

D2i(A) = (22i~4F2 +22'-6F4 + - . + 22F2,_4 + F2,_2)-(1,1,1,1,1) 
+ Hi(F2i+1,F2i,0,0,F2i). 

Proof: We proceed by induction. First, note that 
,4 = (1,0,0,0,0), 
Z>04) = (1,0,0,0,1), 

D\A) = (1,0,0,1,2) = H\F3, F2,0,0, F2). 
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Thus (6) holds for / = 1. Now assume (6) holds for /. Then 

&M{A) = (22<~4F2 + 22i~% + •••+ 22F2i_4 + F2i_2) • (2,2,2,2,2) 

+ & (F2k+2 > F2i > °> F2i > F2k+l) 

and 

Eiu*\A) = (22i~4F2 + 22i~6F4 + • • • + 22F2,_4 + F2i_2) • (4,4,4,4,4) 

+ H {r2j+2 + ^ 2 / ' ^ l i -> ^ 2 \ > ^ 2 / + ^2i'+2 ? ̂ 2/+2 + -V2/+1 + ^2 / ) 

= (22'"2
JF2 +22'-4F4 + - . + 24F2,_4 + 22F2/_2).(1, 1,1,1,1) 

+ (Fli, F2U F2i, F2i> F2i) + H'i^M, °> °> ^2H-2> ^ + 3 ) 

= (22i-2F2+2*-4F4 + -+24F2i_4 + 22F2i_2+F2i)-(\, 1,1,1,1) 
+ HM(F2i+3,F2i+2,0,0,F2i+2). D 

Since the sum in (6) will occur frequently, we will adopt the following notation: 

SUM(2/) = 22,-4F2 + 22,-6F4 + • • • + 22F2k_4 + F2i_2. 

Note that SUM is defined only for even integers. We use this notation to rewrite (6) and (7) for 
J > 1 : 

D2i(A) = SUM(2i)-(l,l,l,l,l) + Hi(F2i+1,F2i,0,0,F2iy, (8) 

D2i+\A) = 2 • SUM(2/) • (1,1,1,1,1) + #'CF2/+2, F^, 0, F2i, Fa+2). (9) 

Theorem 5: Let m be odd. Suppose Dl(A) s A (mod m). 
If I is even, then Fx = 0 (mod m), Fl+1 = 1 (mod m), SUM(I) = 0 (mod m), and 511. 
If I is odd, then Ft = 0 (mod m), FM = -1 (mod m). 

Proof: If I is even, then (8) applies with 2/ = I. To simplify notation, let s = SUM(T). Then 

D\A) = (s, s, s, s, s) + Hl,2(FM, Fu 0,0, Ft) 
= Hl/2(s + FM,s+Fhs,s,S + Fx) 
= (1,0,0,0,0) (mod/w). 

Hence, 511, s = 0 (mod m), Fx = 0 (mod m), and Fl+l = 1 (mod m). 
If I is odd, then (9) applies with 2/ +1 = I. Let 5 = SUM(I -1) . Then 

D\A) = s-{2,2,2,2,2) + H^I2(FU1, FUl, 0, Fr_1; FI+1) 
= H<l-W2(2 -s+FUl,2-s + FUl, 2-s,2-s+F,_u 2-s+FUl) 
= #( M ) / 2 + 2(2 • 5,2 - s+F M , 2 • 5 + Ft+1,2 • 5 + FI+1,2 • 5+F M ) 
= (1,0,0,0,0) (mod/w). 

Hence, 2-5 = 1 (mod /»), FUl = -1 (mod m), and Fl+l = -1 (mod m). The last two congruences 
imply that Fx = 0 (mod w). D 
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PROPERTIES OF FK = 0 (mod m) 

For m odd, l(m) equals the smallest positive integer I for which Dl{A) = A (mod m). From 
Theorem 5, we know that Fx = 0 (mod m) and either Fl+l = 1 (mod m) or Fl+l = -1 (mod m), 
depending on whether I is even or odd, respectively. Thus, we now consider numbers K for 
which FK = 0 (mod m). We begin by observing that there does exist a l > 0 such that FK = 0 
(mod /w). Since Zm is finite, there exist / > j such that Fj=Fj (mod w) and i^+1 = FJ+l (mod m). 
These congruences together imply that Ft_x s i ^ (mod #i) which, in turn, implies Ft_2 = Fj_2 

(mod #?). Continuing, we see that Ff_j =F0 = 0 (mod m). 
Numbers K for which FK = 0 (mod #f) have been studied in [2], [10], and [11]. The lemmas 

that follow, as well as the observations in the previous paragraph, are well known. Their proofs 
are included because they involve techniques that we will use when we derive results about \{m). 

Lemma 2: Suppose FK = 0 (mod m) and FK+l = a (mod m) with K > 0. Then 

F^j^i-iy^a-Fj (modrn) (10) 
and 

FiK+j=ai'Fj (modm) (11) 

fo ra l l j> l and j = 0 , l , . . . ,Z - l . 

Proof: To prove (10), we first note that FK = 0 = -a-F0 (mod m) and FK_x = FK+l-FK = 
a - 0 = a-i^ (mod /w). Thus, (10) holds for j = 0 and y = l. Now assume (10) holds for 7 - I 
and7*; then 

^ r - O + i ) = FK-u-i)~FK-j 

-{-lya-Fj^-i-iy^aFj (modm) 

= (-iya(F;_1 + F/) (modm) 

^(-iy+2a.FJ+l (modm). 

To prove (11), we make use of the well-known identity: Fi+J = Ft_xFj + FtFj+l. Now 

FK+J = FJ+l+K_t = FjFK_x + Fj+lFK = Fj.a + FJ+l• 0 EE a • F, (modm). 

Thus (11) holds for i = 1. Now assume (11) holds for /'. Then 
F{M)K+j = FiK+j+UK-l = FiK+jFK-l + FiK+J+lFK s <* " ^ y ** s ^ ' ^} ( m ° d ^ D 

Lemma 3: Suppose FK = 0 (mod wi) and i^+1 = a (mod m) with Z > 0. Then a2 = (-t)K (mod 
wi). Thus, when m > 2, a2 = 1 (mod /w) if and only if K is even. 

Proof: By (10), 
l = i5 = / ^ - i ) s ( - ^ (modm). 

Thus a2 = ( - l ) r (mod m). As for the second statement, when m> 2, (-1)^ = 1 (mod /it) if and 
only if K is even. D 

In Theorem 5 we consider I for which Dl(A) = A (mod m) where, of course, m is odd. We 
showed that Fx = 0 (mod 01) and either i^+1 = 1 (mod m) or i\+1 = -1 (mod m) depending on 
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whether I is even or odd, respectively. Lemma 3 shows that the second case with I odd is impos-
sible. Thus, when Dl(A) = A (mod m), I is even with Fx = 0 (mod m) and Fl+l == 1 (mod m). We 
now show that there is always a K > 0 for which FK = 0 (mod m) and i^+1 = 1 (mod m). 

Lemma 4: Suppose FK = 0 (mod wi) and i^+1 = a (mod #i) with ^ > 0. Then: 
F2K = 0 (mod m) and i^r+1 = (-1)* (mod m); 
F4K = 0 (mod m) and i^r+1 = 1 (mod m). 

Proof: Using Lemmas 2 and 3, we find: 

F2K = a2F0 = 0 (mod m) and i ^ + 1 = a2Fx = (-1)^ (mod m); 
F4k = a% = 0 (mod m) and F4yt+1 = a4Ft = (-l)2K = 1 (mod m). D 

Thus that there is always a K > 0 for which FK = 0 (mod w) and i^+1 = 1 (mod m). We 
denote the smallest such integer by K(m). That is, 

K(in) = min{X > 0|i^ = 0 (mod m) and i^+1 = 1 (mod m)}. 

By Lemma 3, Z(w) is even when m>2. We note that ^(2) = 3. The next lemma contains a 
useful property of K(m). 

Lemma 5: Let K > 0. Then FK = 0 (mod wi) and FK+l = 1 (mod wi) if and only if K(m) \K. 

Proof: Suppose FK = 0 (mod TW) and i^+1 = 1 (mod /w). By definition, K(m) is the smallest 
number satisfying these conditions. Thus K(m) < K. Let K = q-K(m) + r, where 0< r <K(m). 
Then by Lemma 2, FK = FqK^+r = Fr (mod wi). Since i ^ = 0 (mod m), Fr = 0 (mod m). Hence 
r = 0. The converse follows immediately from Lemma 2. • 

Corollary 2: Let m be odd. Then l(m) = 1cm{5, j • Z(w)}, wherej is the smallest integer for which 
SUMO • K(m)) s 0 (mod m). 

Proof: We know that I(iw) is the smallest I for which Dl(A) = 4̂ (mod JW). As we observed 
above, I is even, Fx = 0 (mod wi) and Fl+l = 1 (mod m). By Lemma 5, I is a multiple of K(m). 
The conclusion now follows immediately from Theorem 5. • 

By Corollary 2, when/? is an odd prime, l(pk) is a multiple K(pk). The following lemma 
connects K(pk) and K(p). This relationship will greatly aid in the calculation of l(pk). 

Lemma 6: Letp be a prime. Then 
(i) For it > 1, J^y + 1 ) equals either K(pk) or /? • K(pk). 

(ii) If K(p2) * K(j>), then K(pk) = pk-l-K(p) for * > 2. 
fiii) If K(p2) = K(p), then there exists */>2 such that K(pk) = K(p) for k<u and K(pk) = 

pk-u-K(p) for Jfc>ii. 

Proof: This is a well-known result; its proof is given in [1]. Note the similarities between the 
properties of K in this lemma and the properties of I in Theorem 3 and Corollary 1. • 

We know that l(pk) is a multiple of K(pk), while the latter is a multiple of K(p). Thus, 
I( j /) is a multiple of ^ (p ) . We conclude this section with a lemma that gives bounds on K(p). 
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Although the result is well known [10], the proof is included because it shows the way in which 
the different cases arise. As we will see, K(p) depends on the value of 5(/7~1)/2 modulo p. When 
/? = 5, 5(p"1)/2 is, of course, congruent to 0. Hence p = 5 is a special case. For all other odd 
primes, 5(p~1)/2 is congruent to 1 or -1 depending on whether 5 is a quadratic residue or non-
residue of/?, respectively. If/? is congruent to 1 or 9 modulo 10, then 

(5/p) = (p/5) = ([l0q±l]/5) = (±l/5) = l, 

where (•) is the Legendre symbol. Hence 5 is a quadratic residue and 5(/?~1)/2 = 1 (mod/?). On 
the other hand, if/? is congruent to 3 or 7 modulo 10, then 

(5//?) = (/?/5) = ([10? + 3]/5) = (+3/5) = - l . 

In this case, 5 is a nonresidue and 5(/7"1)/2 = -1 (mod/?). 

Lemma 7: Let/? be an odd prime. Then 
K(p) ftp -1) p = 1 or 9 (mod 10), 
K(p) |(2/? + 2) /? = 3 or 7 (mod 10), 
£(5) = 20. 

Proof: By Binet's formula, 

and 

" , -
{\+Sy-(\Sy 

Sip 

1 
2P-1 [(?)#••• 

= 5(p-l)/2 ( m o d / 7 ) 

(i+Sy+1-(i-Sy+l 

V+i Js2p+1 

i 
V 

-T\ 
lpvy['?h 
;i+5 (P-»12] (mod/?). 

/_2y-^+[pj5^' 

(P + 05(/^3)/2 + fp + ^ (p- l )^ 

When /? = 1 or 9 (mod 10), Fp = l (mod /?) and Fp+1 s 1 (mod /?). These imply F ^ = 0 
(mod/?). Hence by Lemma 5, ^(/?) |(/? -1). 

When /? = 3 or 7 (mod 10), F = -1 (mod /?) and iy^ = 0 (mod /?). These imply i^+2 - "1 
(mod/?). By Lemma 4, F2p+2 = 0 (mod/?) and F2p+3 = 1 (mod/?). Hence K(p)\(2p + 2). 

By direct calculation we find that K(5) = 20. D 

PROPERTIES OF SUM (mod m) 

By Corollary 2, for odd m, I(m) = 1cm{5, j-K(m)}, wherey is the smallest integer for which 
SUM(y • K(m)) = 0 (mod m). We now consider such sums. 
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Lemma 8: Suppose FK = 0 (mod m) and FK+l = 1 (mod m), where K is an even positive Integer. 
Then 

SUMC/K) = (2iJ-l)K +... + 2* +1) • SUM(JT) (mod m). 

Proof: The congruence certainly holds for 7 = 1. Assume it holds for7 and consider 7 +1: 

SUM((7 + 1)>K) = 2u+l)K~4F2 + 2a+l)K-6F4 + • • • + 2jK FK_2 + 2jK~2FK 

+ 2 /^+2 + • • • + 2 i^y+1)^_4 + F(j+l)K_2 

= 2jK • (2^"4F2 + 2r"6F4 + • • • + FK_2) + 2^"2F^ 
+ 2 i^+2 H +2 î y+1)jK-_4 + F(j+T)K_2. 

Now by Lemma 2, i^+2 = F2 (mod m\..., F(J+l)K_2 = Fx_2 = Jy_2 (mod /w). Thus 

SUM((7 +1) • K) = 2jK • (2K~4F2 + 2r"6F4 + • • • + FK_2) + 2J'K~2FK 

+ 2JK~AF2 + • • • + 22FJK_4 + i y _2 (mod m) 

s 2 ; r • SUM(X) + 0 + SUM(/£) (mod wi) 
s 2 ^ • SUM(X) + (2°"1)i: + • • • + 2K +1) • SUM(X) (mod w) 
= (2JK + 2°-1)^ + • • • + 2K +1) • SUM(Z) (mod wi). • 

For odd m, l(m) is a multiple of j-K(m). Lemma 8 tells us how to find 7. First, we cal-
culate SUM.(K(m)). If SUM(X(w)) = 0 (mod m\ \{m) = 1cm{5, K(m)}. On the other hand, if 
SUM(K(m)) £ 0 (mod m), then we must select^ so that 

(2U-i)K{m) + . . . + 2i:(m) + j). SUM(£(WI)) = 0 (mod m). 

The next lemma will aid in calculating SUM(K(m)) modulo m. 

Lemma 9: Suppose FK = 0 (mod m) and FK+l = 1 (mod TW), where Â  is an even positive integer. 
Then 

SUM(tf) = ZI 2/ K_1 (mod w)-

Proof: By Lemma 2, 7^-/ = (-l)J+1Fj (mod w). Thus 

SXJM(K) = 2K~% + 2K~6F4 + ...+22FK_4 + FK_2 

- -2K~4FK_2 - 2K~6FK_4 22F4 - F2 (mod m). 

In preparation for using Binet's formula, let a = (1 + >/5) and b = (1 - V5). Note that 

a 2 - 1 = 5 + 2V5, Z>2 - 1 = 5-2V5,and (a2-l)-(ft2-1) = 5. 

Now, by Binet's formula, Fj = [aJ -bJ]I (2>S). Thus 2J~2Fj = [aJ -bJ]/ (22 V5). Hence 

2K~4FK_2 + 2K~6FK_4 + -+22F4+F2 

= {aK~2 -bK~2 +aK~4-bK-4 + -+a2-b2]l(22S) 
= [(aK-2+aK-4 + -+a2 + l)-(bK-2+bK-4 + -+b2 + l)]/(22j5) 
= [(aK -1) / (a2 -1) - (bK -1) / (b2 -1)] / (22 V5) 
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= [{aK -1) • (5 - 2V5) - (** -1) • (5 + 2 V5)] / (22 • 5^5) 
= [5aK - 2-S aK - 5 + 2^5 - SbK - 2V5 bK + 5 + 2V5] / (22 • 5^5) 
= (aK-bK)/(22j5)-(aK+bK)/(2-5) + l/5 
^2K-2FK-5-1[(aK+bK)/2-l]. (13) 

We use the Binomial Theorem to rewrite 5~\(aK+bK) / 2 -1] as 

(1 +75)*+(1-75)* - 1 = Sffy)5/-1. d4) 2 Tfsyy, 
We now combine (12), (13), and (14) and reduce modulo m: 

SUM(K) = -2K-4FK_2 - 2K~6FK_4 22 F4 - F2 (mod m) 
= -2K~2FK + 5-\(aK +bK)/2-l] (modm) (15) 

-Z(J)5 7"1(m o d'«)- n 
Note that Lemmas 8 and 9 hold for all m so long as K is an even positive integer. 

DETERMINING l(p) FOR ODD PRIMES 

We are now going to determine l(p) for odd primes. We will consider four cases: p = 3, 
p = 5, p = 1 or 9 (mod 10), and p = 3 or 7 (mod 10). Although the derivations will be different, 
the final result will be the same. In order to state the result, we need some additional notation. 
For a GZm with gcd(a, m) = 1, we will denote the order of a in Zm by om(a). Thus, if s > 0 is the 
smallest positive integer for which as = 1 (mod m\ we will write om(a) = s. Of course, if a = 1 
(mod m\ om(a) = 1. What we will show is that for odd/?, 

l(p) = lcm{5,op(2K^)-K(p)}. (16) 

We showed in Corollary 2 that l(p) is the least common multiple of 5 and j-K(p), where j is 
the smallest integer for which SUM(j K(p)) = 0 (mod p). As we observed above, to findj we 
first calculate SUM(K(rn)). If SUM(K(rn)) = 0 (mod m), l(m) = 1cm{5, K(m)}. On the other 
hand, if SUM(K(m)) # 0 (mod m), then we must selecty* so that 

(2GHW«) +... + 2*0"> +1) • $UM(K(m)) = 0 (mod m). 

We begin with the two special cases, p = 3 and p = 5. 

Theorem 6: 1(3) = 40 and 1(5) = 20. 

Proof: By direct calculation, it is easy to verify that ^(3) = 8. Now, by Lemma 9, 

S U M ( 8 ) - X ( ^ (mod3) 

= 1 + 2 + 1 + 2 (mod 3) = 0 (mod 3). 

Hencel(3) = lcm{5,8} = 40. 
It is also easy to verify that K(5) = 20. Now, by Lemma 9, 
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S U M ^ O ^ X f ^ V " 1 (mod5) = f2
2°l (mod 5)^0 (mod5). 

Hence 1(5) = lcm{5,20} = 20. D 

We note that (16) holds for p = 3 and p = 5. In both cases, K(p) is a multiple of <fi(p) -
p-l; hence, 2K(p) s 1 (modp). Therefore, for p = 3 and p = 5, op(2K^) = 1 and \{p) = lcm{5, 
op(2™yK(p)}. 

Next we consider primes for which p = l or 9 (mod 10). We begin with a lemma which deals 
with S U M ^ ^ " ) ) modulo j?-7' for j>\. At the moment we are concerned only when j = l. 
However, we state and prove the more general case since we will need it later. 

Lemma 10: Let/? be a prime such that p = 1 or 9 (mod 10). Let q = pj for j > 1. Then 

SUM(K(g)) s r 1 ^ ^ -1] (modq). 

Proof: To simplify notation, let K = K(q). Since 5 is quadratic residue, the congruence 
x2 = 5 (mod q) has a solution in Zq. Let r be such a solution. Then Binet's formula holds in Zp: 

FK SE [(1 + r)* - (1 - r)K] I (2Kr) = 0 (mod ?) (17) 
and 

FK+l = [(1 + r ) r + 1 - (1 - r)K+l] I (2K+lr) = 1 (mod ?). (18) 

From (17), we see that (l + r)* = ( l - r ) r (mod/?). Thus, we can rewrite (18) as 

l^(l+r)Ki(l + r)-(l-r)]/(2K+lr) = (l + r)K/2K (modq). 

Hence (l + r)K = 2 r (mod/?). Now, by (15) of Lemma 9, 

SUM(Z) s ^ [ ( ( l + r)* + (1 - r)K) / 2 -1] (mod g) 
s f ^ - l ] (modg). D 

Theorem 7: Let/? be a prime such that p = l or 9 (mod 10). Then 

l(p) = lcm{5,op(2K^yK(p)}. 

Proof: Again, to simplify notation, we let K = K(p). Using Lemmas 8 and 10, we have 

SUM(y • K) = (2°-l)K + • • • + 2K +1) • SUM(JT) (mod p) 
= ( 2 ° - ^ + • • • + 2K +1) • S - 1 ^ -1] (mod p) 
a {[2* -\]I[2K-\]}-5-\2K -1] (mod/?) 
= 5-i[2^_i](mod/7). 

We want the smallest./' for which SUM(j • K) = 0 (mod/?). Clearly, j = op(2K) and hence l(p) = 

We now consider the case in which p = 3 or 7 (mod 10). Since 5 is a nonresidue in this case, 
Binet's theorem cannot be used as above. 
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Lemma 11: Let p be a prime such that p = 3 or 7 (mod 10) with p > 3. Then SUM(2/> + 2) = 3 
(mod />) and S\JM(K(p)) # 0 (mod /?). 

Proof: By Lemma 9, 

SUM(2p + 2)^5r2^+2l5^1 (mod/0. 
For l<y<( /? + l ) /2 , 

> + 2 ) .0 (mod/>) and (2/f2
+_2

2 J - 0 (mod/?). 

Also 

and 

2^2
+ 2 ) . l (mod/,), ( 2 ^ 2 ) . l ( m o d / 0 , 

f2p+2V (2/> + 2)(2/? + l )2 /7( /7+/7- l ) - ( /7 + 2 ) _ 2 - l - 2 - ( / 7 - l ) ! 
(p + l ) p ( p - l ) - 2 ~ !•(/>-!)! ~ i m ° Q ^ -

Since 5 is nonresidue, S^p 1)/2 = -1 (mod/?). Hence 

= l + 4-(-l) + l + 5 (modp) = 3(modp). 

By Lemma 7, K(p)\(2p + 2). If K(p)*(2p + 2), let j = (2p + 2)/K(p). Then by Lemma 8, 

SUM(2p + 2) - SUM(j • K(p)) s ( ^ " W ^ +... + 2*(r t +1) • SUM(X(p)) (mod p). 

Since SUM(2p + 2) *£ 0 (modp) when p > 3, SUM(K(p)) # 0 (modp). D 

Lemma 12: help be a prime such that p = 3 or 7 (mod 10) with p > 3. Then 2X(/?) # 1 (mod/?). 

Proof: Assume to the contrary that 2r(/7) = 1 (modp). This means op(2)\K(p) which, in 
turn, implies that op(2)\(2p + 2). But we know op(2)\{p-1). Since gcd(p-1, p +1) = 2, op(2) 
must equal 2 or 4. For p > 3, 22 # 1 (mod p) and so op(2) * 2. Now 24 = 2 (mod 7), 24 = 3 
(mod 13) and, for all other p9 2 4 < p . Thus, for p > 3 , 24 ̂  1 (modp), so op(2)^4. We 
conclude that 2K{p) # 1 (modp). D 

Theorem 8: Let p be a prime such that p=3 or 7 (mod 10) with p > 3. Then we have I(p) = 

Proof: To simplify notation, we let K = K(p). Using Lemma 8, we have SUM(J'K)s 
(2{j~l)K + — + 2 r + l)-SUM(Z) (modp). By Lemma 11, SUM(JT) # 0 (modp), so we want the 
smallest j for which 

2<>-1>A: + . .-+2/ : + l sO (modp). (19) 

Now 2K # 1 (modp^) by Lemma 12. Thus, the smallest7 for which (19) holds is op(2K). 0 
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DETERMINING ! ( / ) FOR ODD PRIMES 

We know that l(pk) = ps -l(p) for some $<k-l. We now show that for most, if not all, 
primes, l(pk) = pk~l • l(p). There are several cases. 

Corollary 3: Let p be an odd prime with p * 5. If K(p2) * K(p), then \{pk) = pk~l • \{p). 

Proof: By the theorems above, we know that \{p) = 1cm{5, op(2Kip))-K(p)}. Of course, 
op(2K(p)) is relatively prime top. Further, for p 5*5, by Lemma 7, K(p) is also relatively prime 
top. Hence, gcd(l(p),p) = l. 

By Lemma 6(ii), K(pk) = pk~l-K(p) for k > 2. We know from Corollary 2 that I(p2) is a 
multiple of K(p2) = p-K(p); hence, p|I(p2). On the other hand, Corollary 1 tells us that \{p2) 
equals either \{p) or p-l(p). Since gcd(I(/?), p) = 1, l(j>l) = P'l(p)- This, in turn, implies by 
Corollary 1 that l(pk) = pk~l-l(p) for k> 2. D 

When /? = 5, the proof of Corollary 3 does not apply since K(S) = 20, hence gcd(I(5), 5) * 1. 
However, direct calculation shows that I(52) * 1(5). Thus 1(5*) = 5*"1 -1(5) for k > 2. 

Even if K(p2) = K(p), it may still be the case that l(p2) = p-l(p)• We now consider this 
possibility. 

Corollary 4: Let p be an odd prime with p.*5. Suppose that K(p2) = K(p). If opl{2K{p)) & 
op(2K(p)), then \{pk) = pk~l • l(p). 

.Proof: Let K = K(p). By Corollary 2 and Lemma 8, l(p2) = lcm{5,j-K}, where j is the 
smallest integer for which 

SUMO' • K) s (2°"1)r +... + 2* +1) • SUM(Z) = 0 (mod p2) . (20) 

First, suppose that SUM(JT) = 0 (mod p2); this implies SUM(Z) = 0 (mod p). By Lemmas 10 
and 11, this can occur only when p = 1 or 9 (mod 10), op(2K) = 1 and op2(2^) = 1. But this con-
tradicts the hypothesis. Thus, SUM(iQ # 0 (mod/?2) and 2 r ^ 1 (mod/?). Hence, the smallest j 
for which (20) holds is op2 (2K) = /? • op(2K). The proof now proceeds in the same manner as the 
proof of Corollary 3. We conclude that \{p2) * t(p) and hence l(pk) = pk~l • l(p). • 

As Wall points out, it is not known whether there exists a prime p for which K(p2) =K(p) 
[11]. It has been verified that K(p2) * K(p) for p < 10,000. Even if there is a prime for which 
K(p2) * K(p), it may still be the case that l(p2) - p • \{p). In order for l(p2) * p • l(p), two con-
ditions must hold: K(p2) = K(p) and op2(2K) = op(2K). Of course, although rare, it is possible 
for an element to have the same order modulo/? and p2. 

BOUNDS ON l(p) 

We now use the results from the previous sections to find bounds on l(p). First, we note an 
alternate way to calculate l(p). 

Corollary 5: Let/? be prime with p > 5. Then l(p) = lcm{5, op(2\ K(p)}. 
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Proof: By Theorems 7 and 8, it suffices to show that op(2K^) • K(p) = lcm{op(2), K(p)}. 
Now op(2*V>) = op(2) I gcd(K(p), op(2)). Hence 

op(2^).K(p) = op(2)/gcd(K(p),op(2))-K(p) = lcm{op(2),K(p)}. 0 

Corollary 6: Let/? be prime with p > 5. Define B(p) as follows: 
B{p) = (p -1) /> s 1 (mod 10); 
B(p) = 5(p -1) /> = 9 (mod 10); 
B(p)=5(p2 - 1 ) /2 /? s 3 or 7 (mod 10) and/? = 1 (mod 4); 
5(/?) = 5 0 2 - l ) /? = 3or7 (mod 10) and/? = 3 (mod4) 

Then I(p)|5(p). 

Proof: We know by Lemma 7 that op(2)|(/>-1). Now, for p = 1 or 9 (mod 10), we have 
^ 0 ) 1 0 - 1 ) Hence, for these primes, lcm{op(2),£(/?)}|(/?-l). Thus l(p)\B(p). 

For p = 3 or 7 (mod 10), £(/>) |2 • (/? +1). Therefore, for these primes, 
lcm{op(2), K(p)} \lcm{p -1,2 • (p +1)}. 

Since 
lcm{/>-l,2-(/? + l)} = (/>2-l)/2 /> = 1 (mod 4), 
lcm{/?-l,2(/? + l)} = (/>2-l) /?s3(mod4), 

l(p) = B(p). Q 

For the bounds given in Corollary 6, the most common situation is that l(p) = B(p). This 
is certainly the case when op(2) equals p-\ and K{p) equals p-\ or 2/?+ 2, depending on 
whether/? is congruent to ±1 or +3 modulo 10, respectively. 

For p = 1 or 9 (mod 10), l(p) can equal B(p) even when K(p) < (p -1). The smallest ex-
amples are 

p = 101: .£(101) = 50, o101(2) = 100, so 1(101) = 100 = 5(101), 
p = 29: £(29) = 14, o29(2) = 28, so 1(29) = 5 • 28 = 5(29). 

However, l(p)<B(p) if and only if both K(p) and op(2) are less than p-\. The smallest exam-
ples are 

p = 401: £(401) = 200,0^,(2) = 200, so 1(401) = 200 < 400 = 5(401), 
p = 89: £(89) = 44,Og9(2) = 11, so 1(89) = 5-44<5-88 = 5(89). 

On the other hand, for p = 3 or 7 (mod 10), \{p) * B(p) if K(p) < (2p + 2). The proof of 
Lemma 7 shows that K(p) *p + \. Hence, if K(p) * (2p + 2), then K(p) < (p +1). However, 
l(p) can be less than B(p) in a variety of ways. As we have already noted, this is the case when 
K(p) < (2p + 2). It can also occur even when K(p) = (2p + 2). There are 8 possibilities: p = 3 
or 7 (mod 10), p = 1 or 3 (mod 4), K(p) less than or equal to (2p + 2). Here are examples of 
each: 

p = U3: £(113) = 76,o113(2) = 28, soI(113) = 5-532<5-6384 = 5(113), 
p = 73: £(73) = 148, o73(2) = 8, so 1(73) = 5 • 296 < 5 • 2664 = 5(73), 
p = 43: £(43) = 88,o43(2) = 14, so 1(43) = 5-616<51848 = 5(43), 
p = 263: £(263) = 176,0^3(2) = 131, sol(263) = 5-23056<5-69168 = 5(263), 
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p = 557: K(557) = 124, o557(2) = 556, so 1(557) = 5-17236 <5-155124 = 5(557), 
p = 17: K{\1) = 36,o17(2) = 8, sot(17) = 5-72<5144 = B{\1), 
p = 47: K(47) = 32, o47(2) = 23, so 1(47) = 5• 736 < 5• 2208 = 5(47), 
p = \2T. K(U7) = 256,oul(2) = l, so 1(127)-5-1792 <5-16128 = 5(127). 

DETERMINING §(2* ) AND 1(2* ) 

Finally, we consider powers of 2. 

Lemma 13: For * > 1, K(2k) = 3 • 2k~l. Further, gcd(SUM(5 • K(2k)), 2) = 1. 

Proof: It is easy to verify that K(2) = 3 and K(22) * 3. Thus, for k > 1, K(2k) = 3 • 2k~l. 
To simplify notation, let K = K(2k), where k > 1. Since ^(2*) = 2k~\ K = 3-</>(2k). Thus 

2K = 1 (mod 2*). Combining this observation with Lemma 8 gives us 

SUM(5iT) = (24K + 23K + 22K + 2K +1) • SUM(r> (mod 2k) 
= 5-STJM(r> (mod 2*). 

Thus, to show gcd(SUM(5Z), 2) = 1, it suffices to show that gcd(SUM(JST), 2) = 1. By Lemma 9, 

suM(r>= S I 2 • P"1 (mod2<:) 

- 3 Z " I ( 3 • 2
2 " ) 5 / - 1 +532*-2-1 (mod 2') 

= 0+1 (mod 2). 

Hencegcd(SUM(Z),2) = l. D 

Theorem 9: §(2k) = £ and 1(2*) = 15-2*"1. 

Proof: As can easily be verified, D16(A) = D(A) (mod 2). Thus §(2) = 1 and 1(2) = 15. 
For k > 1, set K = K(2k) = 3 • 2k~l. Note that K is even and gcd(K, 5) = 1. Now, by Theorem 

5, 
Dk-l+5K(A) = Dk-\D5K(A)) 

a Dk-\SUM(5K) • (1,1,1,1,1) + H5K/2(A)) (mod 2k) 
= 2k~l • SUM(5£) • (1,1,1,1,1) + Dk~l(A) (mod 2k). 

Since gcd(SUM(5r>, 2) = 1, 2*"1 • SUM(5X) 4 0 (mod 2*). Hence, Dk~l+5K(A) # Z)*"1^) (mod 
2k). On the other hand, 

I?^K(A) = Dk(D5k(A)) 
= £>*(SUM(5£) • (1,1,1,1,1) + H5KI\A)) (mod 2A) 

s 2* • SUM(5Z) • (1,1,1,1,1) + £>*(A) (mod 2*) 

= DA(^) (mod2fc). 

Thus§(2i) = yfcandI(2i) = 15-2*-1. D 
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CORRIGENDUM TO THE PAPER ??ON MULTIPLICITY SEQUENCES" 
The Fibonacci Quarterly, Vol 35, no. 1, pp. 9-10 

Piotr Z&rzycki 
Department of Mathematics, University of Gdansk 

It was pointed out by Professor Harvey L. Abbott that the statement in the Theorem from the 
paper is not true. The counterexample given by Professor Abbot is as follows: 

If g(l) = 1 and g(ri) = 2n for n>\, then L.C.M.(g(rri),g(n)) = g(L.C.M.(m,n)) for 
any m, n and G. C. D. (g(rn), g(h)) ^ g(G. C. D. (m, n)) for some m, n. 

The Theorem is true in a weaker form: 
If g is a multiplicity sequence and g is also quasi-multiplicative which means that 
g(m)g(n) = cg(mn) for any relatively prime m,n, then g is a strong divisibility 
sequence. 

434 [Nov. 


